Peng Jinxue, Zheng Xuefan, Wu Yuqi, Li Cheng, Lv Zhongwei, Zheng Chenxi, Liu Jun, Zhong Haoyue, Gong Zhengliang, Yang Yong
College of Energy, Xiamen University, Xiamen 361102, China.
State Key Laboratory for Physical Chemistry of Solid Surface, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
ACS Appl Mater Interfaces. 2023 Apr 26;15(16):20191-20199. doi: 10.1021/acsami.3c02732. Epub 2023 Apr 14.
All-solid-state lithium-sulfur batteries (ASSLSBs) are considered to be a promising solution for the next generation of energy storage systems due to their high theoretical energy density and improved safety. However, the practical application of ASSLSBs is hindered by several critical challenges, including the poor electrode/electrolyte interface, sluggish electrochemical kinetics of solid-solid conversion between S and LiS in the cathode, and big volume changes during cycling. Herein, the 85(92LiS-8PS)-15AB composite cathode featuring an integrated structure of a LiS active material and LiPS solid electrolyte is developed by in situ generating a LiPS glassy electrolyte on LiS active materials, resulting from a reaction between LiS and PS. The well-established composite cathode structure with an enhanced electrode/electrolyte interfacial contact and highly efficient ion/electron transport networks enables a significant enhancement of redox kinetics and an areal LiS loading for ASSLSBs. The 85(92LiS-8PS)-15AB composite demonstrates superior electrochemical performance, exhibiting 98% high utilization of LiS (1141.7 mAh g) with both a high LiS active material content of 44 wt % and corresponding areal loading of 6 mg cm. Moreover, the excellent electrochemical activity can be maintained even at an ultrahigh areal LiS loading of 12 mg cm with a high reversible capacity of 880.3 mAh g, corresponding to an areal capacity of 10.6 mAh cm. This study provides a simple and facile strategy to a rational design for the composite cathode structure achieving fast Li-S reaction kinetics for high-performance ASSLSBs.
全固态锂硫电池(ASSLSBs)因其高理论能量密度和更高的安全性,被认为是下一代储能系统的一个有前景的解决方案。然而,ASSLSBs的实际应用受到几个关键挑战的阻碍,包括电极/电解质界面差、阴极中硫和硫化锂之间固-固转化的缓慢电化学动力学以及循环过程中的大体积变化。在此,通过在硫化锂活性材料上原位生成多硫化锂玻璃态电解质(这是由硫化锂和多硫化物反应产生的),开发了一种具有硫化锂活性材料和多硫化锂固体电解质集成结构的85(92LiS-8PS)-15AB复合阴极。这种具有增强的电极/电解质界面接触和高效离子/电子传输网络的成熟复合阴极结构,能够显著提高ASSLSBs的氧化还原动力学和面积硫负载量。85(92LiS-8PS)-15AB复合材料表现出优异的电化学性能,在硫化锂活性材料含量高达44 wt%且相应面积负载为6 mg cm的情况下,硫化锂利用率高达98%(1141.7 mAh g)。此外,即使在12 mg cm的超高面积硫负载下,仍能保持优异的电化学活性,具有880.3 mAh g的高可逆容量,对应面积容量为10.6 mAh cm。这项研究提供了一种简单易行的策略,用于合理设计复合阴极结构,以实现高性能ASSLSBs的快速锂硫反应动力学。