Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.
Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China.
Angew Chem Int Ed Engl. 2023 Jun 12;62(24):e202219340. doi: 10.1002/anie.202219340. Epub 2023 May 4.
Enormous advances in photothermal catalysis have been made over the years, whereas the temperature assessment still remains controversial in the majority of photothermal catalytic systems. Herein, we methodically uncovered the phenomenon of temperature determination bias arising from prominent temperature differences in gas-solid photothermal catalytic systems, which extensively existed yet has been overlooked in most relevant cases. To avoid the interference of temperature bias, we developed a universal protocol for reliable temperature evaluation of gas-solid photothermal catalytic reactions, with emphasis on eliminating the temperature gradient and temperature fluctuation of catalyst layer via optimizing the reaction system. This work presents a functional and credible practice for temperature detection, calling attention to addressing the effects of temperature differences, and reassessing the actual temperature-based performances in gas-solid photothermal catalysis.
近年来,光热催化取得了巨大的进展,然而在大多数光热催化体系中,温度评估仍然存在争议。在此,我们系统地揭示了在气固光热催化体系中由于显著的温差而导致的温度测定偏差现象,这在大多数相关情况下都存在,但却被忽视了。为了避免温度偏差的干扰,我们开发了一种通用的协议,用于可靠地评估气固光热催化反应的温度,重点是通过优化反应体系来消除催化剂层的温度梯度和温度波动。这项工作为温度检测提供了一种实用且可信的方法,引起了人们对温差影响的关注,并重新评估了气固光热催化中的实际基于温度的性能。