Suppr超能文献

缺血后再灌注时线粒体膜电位的不稳定性不依赖于线粒体钙摄取。

Mitochondrial membrane potential instability on reperfusion after ischemia does not depend on mitochondrial Ca uptake.

机构信息

Johns Hopkins University, Division of Cardiology, Department of Medicine, Baltimore, Maryland, USA.

Johns Hopkins University, Division of Cardiology, Department of Medicine, Baltimore, Maryland, USA.

出版信息

J Biol Chem. 2023 Jun;299(6):104708. doi: 10.1016/j.jbc.2023.104708. Epub 2023 Apr 14.

Abstract

Physiologic Ca entry via the Mitochondrial Calcium Uniporter (MCU) participates in energetic adaption to workload but may also contribute to cell death during ischemia/reperfusion (I/R) injury. The MCU has been identified as the primary mode of Ca import into mitochondria. Several groups have tested the hypothesis that Ca import via MCU is detrimental during I/R injury using genetically-engineered mouse models, yet the results from these studies are inconclusive. Furthermore, mitochondria exhibit unstable or oscillatory membrane potentials (ΔΨ) when subjected to stress, such as during I/R, but it is unclear if the primary trigger is an excess influx of mitochondrial Ca (mCa), reactive oxygen species (ROS) accumulation, or other factors. Here, we critically examine whether MCU-mediated mitochondrial Ca uptake during I/R is involved in ΔΨ instability, or sustained mitochondrial depolarization, during reperfusion by acutely knocking out MCU in neonatal mouse ventricular myocyte (NMVM) monolayers subjected to simulated I/R. Unexpectedly, we find that MCU knockout does not significantly alter mCa import during I/R, nor does it affect ΔΨ recovery during reperfusion. In contrast, blocking the mitochondrial sodium-calcium exchanger (mNCE) suppressed the mCa increase during Ischemia but did not affect ΔΨ recovery or the frequency of ΔΨ oscillations during reperfusion, indicating that mitochondrial ΔΨ instability on reperfusion is not triggered by mCa. Interestingly, inhibition of mitochondrial electron transport or supplementation with antioxidants stabilized I/R-induced ΔΨ oscillations. The findings are consistent with mCa overload being mediated by reverse-mode mNCE activity and supporting ROS-induced ROS release as the primary trigger of ΔΨ instability during reperfusion injury.

摘要

生理钙通过线粒体钙单向转运体(MCU)进入细胞参与能量适应,但在缺血/再灌注(I/R)损伤期间也可能导致细胞死亡。MCU 已被确定为 Ca 进入线粒体的主要途径。有几个研究小组已经使用基因工程小鼠模型测试了通过 MCU 进行 Ca 内流在 I/R 损伤期间是有害的假设,但这些研究的结果并不一致。此外,当线粒体受到压力(如 I/R)时,其膜电位(ΔΨ)不稳定或呈振荡状态,但尚不清楚主要触发因素是线粒体 Ca(mCa)过量流入、活性氧(ROS)积累还是其他因素。在这里,我们批判性地检查了在 I/R 期间 MCU 介导的线粒体 Ca 摄取是否涉及在再灌注期间ΔΨ的不稳定性或持续的线粒体去极化,方法是在经历模拟 I/R 的新生鼠心室肌细胞(NMVM)单层中急性敲除 MCU。出乎意料的是,我们发现 MCU 敲除不会显著改变 I/R 期间的 mCa 内流,也不会影响再灌注期间ΔΨ的恢复。相比之下,阻断线粒体钠钙交换器(mNCE)抑制了缺血期间的 mCa 增加,但不会影响ΔΨ的恢复或再灌注期间ΔΨ振荡的频率,这表明再灌注期间线粒体ΔΨ的不稳定性不是由 mCa 触发的。有趣的是,抑制线粒体电子传递或补充抗氧化剂稳定了 I/R 诱导的ΔΨ振荡。这些发现与 mCa 过载是由反向模式 mNCE 活性介导的,并且支持 ROS 诱导的 ROS 释放是再灌注损伤期间ΔΨ不稳定性的主要触发因素一致。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验