He Zhiquan, Zheng Donghong, Wang Hengyou
Guangdong Key Laboratory of Intelligent Information Processing, Shenzhen, China.
Guangdong Multimedia Information Service Engineering Technology Research Center, Shenzhen University, Shenzhen, China.
Front Comput Neurosci. 2023 Mar 30;17:1145219. doi: 10.3389/fncom.2023.1145219. eCollection 2023.
Given some exemplars, few-shot object counting aims to count the corresponding class objects in query images. However, when there are many target objects or background interference in the query image, some target objects may have occlusion and overlap, which causes a decrease in counting accuracy.
To overcome the problem, we propose a novel Hough matching feature enhancement network. First, we extract the image feature with a fixed convolutional network and refine it through local self-attention. And we design an exemplar feature aggregation module to enhance the commonality of the exemplar feature. Then, we build a Hough space to vote for candidate object regions. The Hough matching outputs reliable similarity maps between exemplars and the query image. Finally, we augment the query feature with exemplar features according to the similarity maps, and we use a cascade structure to further enhance the query feature.
Experiment results on FSC-147 show that our network performs best compared to the existing methods, and the mean absolute counting error on the test set improves from 14.32 to 12.74.
Ablation experiments demonstrate that Hough matching helps to achieve more accurate counting compared with previous matching methods.
给定一些样本,少样本目标计数旨在对查询图像中的相应类别目标进行计数。然而,当查询图像中存在许多目标物体或背景干扰时,一些目标物体会出现遮挡和重叠,这会导致计数准确性下降。
为克服该问题,我们提出了一种新颖的霍夫匹配特征增强网络。首先,我们使用固定卷积网络提取图像特征,并通过局部自注意力对其进行细化。并且我们设计了一个样本特征聚合模块来增强样本特征的共性。然后,我们构建一个霍夫空间对候选目标区域进行投票。霍夫匹配输出样本与查询图像之间可靠的相似度图。最后,我们根据相似度图用样本特征增强查询特征,并使用级联结构进一步增强查询特征。
在FSC - 147上的实验结果表明,与现有方法相比,我们的网络性能最佳,测试集上的平均绝对计数误差从14.32降至12.74。
消融实验表明,与先前的匹配方法相比,霍夫匹配有助于实现更准确的计数。