Catalonia Energy Research Institute-IREC, Sant Adrià de Besòs, 08930 Barcelona, Spain.
Department of Materials Science and Engineering, Pennsylvania State University, University Park, Pennsylvania 16802, United States.
ACS Nano. 2023 May 9;17(9):8442-8452. doi: 10.1021/acsnano.3c00495. Epub 2023 Apr 18.
CuS and CuSe have recently been reported as promising thermoelectric (TE) materials for medium-temperature applications. In contrast, CuTe, another member of the copper chalcogenide family, typically exhibits low Seebeck coefficients that limit its potential to achieve a superior thermoelectric figure of merit, , particularly in the low-temperature range where this material could be effective. To address this, we investigated the TE performance of CuTe-CuSe nanocomposites by consolidating surface-engineered CuTe nanocrystals. This surface engineering strategy allows for precise adjustment of Cu/Te ratios and results in a reversible phase transition at around 600 K in CuTe-CuSe nanocomposites, as systematically confirmed by in situ high-temperature X-ray diffraction combined with differential scanning calorimetry analysis. The phase transition leads to a conversion from metallic-like to semiconducting-like TE properties. Additionally, a layer of CuSe generated around CuTe nanoparticles effectively inhibits CuTe grain growth, minimizing thermal conductivity and decreasing hole concentration. These properties indicate that copper telluride based compounds have a promising thermoelectric potential, translated into a high dimensionless of 1.3 at 560 K.
CuS 和 CuSe 最近被报道为用于中温应用的很有前途的热电 (TE) 材料。相比之下,铜硫属化物家族的另一个成员 CuTe 通常表现出较低的 Seebeck 系数,这限制了其实现优异的热电优值 的潜力, 特别是在这种材料可能有效的低温范围内。为了解决这个问题,我们通过固结表面工程化的 CuTe 纳米晶研究了 CuTe-CuSe 纳米复合材料的 TE 性能。这种表面工程策略允许精确调整 Cu/Te 比,并导致 CuTe-CuSe 纳米复合材料在大约 600 K 处发生可逆的相转变,这通过原位高温 X 射线衍射与差示扫描量热法分析得到了系统的证实。该相转变导致从金属样到半导体样的 TE 性能的转换。此外,在 CuTe 纳米颗粒周围生成的一层 CuSe 有效地抑制了 CuTe 晶粒生长,最小化了热导率并降低了空穴浓度。这些特性表明基于铜碲化物的化合物具有很有前途的热电潜力,在 560 K 时转换为高无量纲数 1.3。