Suppr超能文献

振动气体流化床颗粒中法拉第波不稳定性的模拟。

Faraday wave instability analog in vibrated gas-fluidized granular particles.

机构信息

Department of Chemical Engineering, Columbia University, New York, New York 10027, USA.

出版信息

Phys Rev E. 2023 Mar;107(3-1):034603. doi: 10.1103/PhysRevE.107.034603.

Abstract

Granular materials are critical to many natural and industrial processes, yet the chaotic flow behavior makes granular dynamics difficult to understand, model, and control, causing difficulties for natural disaster mitigation as well as scale-up and optimization of industrial devices. Hydrodynamic instabilities in externally excited grains often resemble those in fluids, but have different underlying mechanisms, and these instabilities provide a pathway to understand geological flow patterns and control granular flows in industry. Granular particles subject to vibration have been shown to exhibit Faraday waves analogous to those in fluids; however, waves can only form at high vibration strengths and in shallow layers. Here, we demonstrate that combined gas flow and vibration induces granular waves without these limitations to enable structured, controllable granular flows at larger scale with lower energy consumption for potential industrial processes. Continuum simulations reveal that drag force under gas flow creates more coordinated particle motions to allow waves in taller layers as seen in liquids, bridging the gap between waves produced in conventional fluids and granular particles subject to vibration alone.

摘要

颗粒物质在许多自然和工业过程中都至关重要,但混沌的流动行为使得颗粒动力学难以理解、建模和控制,这给自然灾害的减轻以及工业设备的放大和优化带来了困难。外部激励颗粒中的流体动力不稳定性通常与流体中的不稳定性相似,但具有不同的潜在机制,这些不稳定性为理解地质流动模式和控制工业中的颗粒流提供了途径。已经表明,振动颗粒会表现出类似于流体中的法拉第波;然而,只有在高振动强度和浅层中才能形成波。在这里,我们证明了气体流动和振动的组合会引起颗粒波,而没有这些限制,从而可以在更大的规模上实现结构化、可控的颗粒流,同时消耗更低的能量,适用于潜在的工业过程。连续体模拟表明,气体流动下的阻力会产生更协调的颗粒运动,从而允许在更高的层中形成波,这与在传统流体中产生的波以及仅受振动的颗粒产生的波相似,弥合了在常规流体和受振动的颗粒中产生的波之间的差距。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验