Zheng Meiling, Tae Han-Shen, Xue Liang, Jiang Tao, Yu Rilei
Molecular Synthesis Center & Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003 China.
Innovation Platform of Marine Drug Screening & Evaluation, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266100 China.
Mar Life Sci Technol. 2021 Jul 22;4(1):98-105. doi: 10.1007/s42995-021-00108-9. eCollection 2022 Feb.
Conotoxins are marine peptide toxins from marine cone snails. The α-conotoxin RegIIA can selectively act on human (h) α3β4 nicotinic acetylcholine receptor (nAChR), and is an important lead for drug development. The high-resolution cryo-electron microscopy structure of the α3β4 nAChR demonstrates several carbohydrates are located near the orthosteric binding sites, which may affect α-conotoxin binding. Oligosaccharide chains can modify the physical and chemical properties of proteins by changing the conformation, hydrophobicity, quality and size of the protein. The purpose of this study is to explore the effect of oligosaccharide chains on the binding modes and activities of RegIIA and its derivatives at hα3β4 nAChRs. Through computational simulations, we designed and synthesized RegIIA mutants at position 14 to explore the importance of residue H14 to the activity of the peptide. Molecular dynamics simulations suggest that the oligosaccharide chains affect the binding of RegIIA at the hα3β4 nAChR through direct interactions with H14 and by affecting the C-loop conformation of the binding sites. Electrophysiology studies on H14 analogues suggest that in addition to forming direct interactions with the carbohydrates, the residue might play an important role in maintaining the conformation of the peptide. Overall, this study further clarifies the structure-activity relationship of α-conotoxin RegIIA at the hα3β4 nAChR and, also provides important experimental and theoretical basis for the development of new peptide drugs.
The online version contains supplementary material available at 10.1007/s42995-021-00108-9.
芋螺毒素是来自海洋芋螺的海洋肽毒素。α-芋螺毒素RegIIA可选择性作用于人(h)α3β4烟碱型乙酰胆碱受体(nAChR),是药物开发的重要先导物。α3β4 nAChR的高分辨率冷冻电子显微镜结构表明,几个碳水化合物位于正构结合位点附近,这可能会影响α-芋螺毒素的结合。寡糖链可通过改变蛋白质的构象、疏水性、质量和大小来修饰蛋白质的物理和化学性质。本研究的目的是探讨寡糖链对RegIIA及其衍生物在hα3β4 nAChRs上的结合模式和活性的影响。通过计算模拟,我们设计并合成了14位的RegIIA突变体,以探讨残基H14对该肽活性的重要性。分子动力学模拟表明,寡糖链通过与H14的直接相互作用以及影响结合位点的C环构象来影响RegIIA在hα3β4 nAChR上的结合。对H14类似物的电生理学研究表明,除了与碳水化合物形成直接相互作用外,该残基可能在维持肽的构象中起重要作用。总体而言,本研究进一步阐明了α-芋螺毒素RegIIA在hα3β4 nAChR上的构效关系,也为新型肽类药物的开发提供了重要的实验和理论依据。
在线版本包含可在10.1007/s42995-021-00108-9获取的补充材料。