Suppr超能文献

使用新的评分预测模型对胶质母细胞瘤患者进行预后评估。

Prognostic evaluation of patients with glioblastoma using a new score prediction model.

机构信息

Department of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Xiangya Hospital, Central South University, Changsha, 410008, China; Institute of Clinical Pharmacology, Engineering Research Center for Applied Technology of Pharmacogenomics of Ministry of Education, Central South University, Changsha, 410078, China; Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China.

Department of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Xiangya Hospital, Central South University, Changsha, 410008, China; Institute of Clinical Pharmacology, Engineering Research Center for Applied Technology of Pharmacogenomics of Ministry of Education, Central South University, Changsha, 410078, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China.

出版信息

Eur J Surg Oncol. 2023 Sep;49(9):106902. doi: 10.1016/j.ejso.2023.04.001. Epub 2023 Apr 13.

Abstract

Despite the wide reportage of prognostic factors for glioblastoma (GBM), it is difficult to determine how these factors interact to affect patients' survival. To determine the combination of prognostic factors, we retrospectively analyzed the clinic data of 248 IDH wild-type GBM patients and built a novel prediction model. The survival variables of patients were identified via univariate and multivariate analyses. In addition, the score prediction models were constructed by combining classification and regression tree (CART) analysis with Cox regression analysis. Finally, the prediction model was internally validated using the bootstrap method. Patients were followed for a median of 34.4 (interquartile range, 26.1-46.0) months. Multivariate analysis identified gross total resection (GTR) (HR 0.50, 95% CI: 0.38-0.67), unopened ventricles (HR 0.75 [0.57-0.99]), and MGMT methylation (HR 0.56 [0.41-0.76]) as favorable independent prognostic factors for PFS. GTR (HR 0.67 [0.49-0.92]), unopened ventricles (HR 0.60 [0.44-0.82]), and MGMT methylation (HR 0.54 [0.38-0.76]) were favorable independent prognostic factors for OS. In the process of building the model, we incorporated GTR, ventricular opening, MGMT methylation status, and age. The model had six and five terminal nodules in PFS and OS respectively. We grouped terminal nodes with similar hazard ratios together to form three sub-groups with different PFS and OS (P < 0.001). After the internal verification of bootstrap method, the model had a good fitting and calibration. GTR, unopened ventricles, and MGMT methylation were independently associated with more satisfactory survival. The novel score prediction model which we construct can provide a prognostic reference for GBM.

摘要

尽管胶质母细胞瘤(GBM)的预后因素已有广泛报道,但很难确定这些因素如何相互作用影响患者的生存。为了确定预后因素的组合,我们回顾性分析了 248 例 IDH 野生型 GBM 患者的临床资料,并建立了一个新的预测模型。通过单因素和多因素分析确定患者的生存变量。此外,通过分类回归树(CART)分析与 Cox 回归分析相结合构建评分预测模型。最后,使用自举法对内部分验证预测模型。患者中位随访时间为 34.4 个月(四分位间距 26.1-46.0)。多因素分析确定肿瘤全切除(GTR)(HR 0.50,95%CI:0.38-0.67)、未打开脑室(HR 0.75 [0.57-0.99])和 MGMT 甲基化(HR 0.56 [0.41-0.76])是 PFS 的有利独立预后因素。GTR(HR 0.67 [0.49-0.92])、未打开脑室(HR 0.60 [0.44-0.82])和 MGMT 甲基化(HR 0.54 [0.38-0.76])是 OS 的有利独立预后因素。在构建模型的过程中,我们纳入了 GTR、脑室开放、MGMT 甲基化状态和年龄。该模型在 PFS 和 OS 中分别有 6 个和 5 个末端节点。我们将具有相似风险比的末端节点分组在一起,形成具有不同 PFS 和 OS 的三个亚组(P<0.001)。通过自举法的内部验证,该模型具有良好的拟合度和校准度。GTR、未打开脑室和 MGMT 甲基化与更满意的生存独立相关。我们构建的新评分预测模型可为 GBM 提供预后参考。

相似文献

1
Prognostic evaluation of patients with glioblastoma using a new score prediction model.
Eur J Surg Oncol. 2023 Sep;49(9):106902. doi: 10.1016/j.ejso.2023.04.001. Epub 2023 Apr 13.
3
Is MGMT promoter methylation to be considered in the decision making for recurrent surgery in glioblastoma patients?
Clin Neurol Neurosurg. 2018 Apr;167:6-10. doi: 10.1016/j.clineuro.2018.02.003. Epub 2018 Feb 5.
4
Partial resection offers an overall survival benefit over biopsy in MGMT-unmethylated IDH-wildtype glioblastoma patients.
Surg Oncol. 2020 Dec;35:515-519. doi: 10.1016/j.suronc.2020.10.016. Epub 2020 Nov 1.
5
MGMT promoter methylation status as a prognostic factor for the outcome of gamma knife radiosurgery for recurrent glioblastoma.
J Neurooncol. 2017 Jul;133(3):615-622. doi: 10.1007/s11060-017-2478-9. Epub 2017 May 23.
6
The prognosis of MGMT promoter methylation in glioblastoma patients of different race: a meta-analysis.
Neurochem Res. 2014 Dec;39(12):2277-87. doi: 10.1007/s11064-014-1435-7. Epub 2014 Sep 18.
8
MGMT gene promoter methylation as a potent prognostic factor in glioblastoma treated with temozolomide-based chemoradiotherapy: a single-institution study.
Int J Radiat Oncol Biol Phys. 2012 Nov 1;84(3):661-7. doi: 10.1016/j.ijrobp.2011.12.086. Epub 2012 Mar 11.
10
The impact of MGMT methylation and IDH-1 mutation on long-term outcome for glioblastoma treated with chemoradiotherapy.
Acta Neurochir (Wien). 2016 Oct;158(10):1943-53. doi: 10.1007/s00701-016-2928-8. Epub 2016 Aug 15.

引用本文的文献

1
A novel immune cell signature for predicting glioblastoma after radiotherapy prognosis and guiding therapy.
Int J Immunopathol Pharmacol. 2024 Jan-Dec;38:3946320241249395. doi: 10.1177/03946320241249395.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验