Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.
Department of Biostatistics and Data Science, University of Texas Health Science Center, School of Public Health, Houston, Texas, USA.
J Appl Clin Med Phys. 2023 Jul;24(7):e13970. doi: 10.1002/acm2.13970. Epub 2023 Apr 20.
Variability in contouring contributes to large variations in radiation therapy planning and treatment outcomes. The development and testing of tools to automatically detect contouring errors require a source of contours that includes well-understood and realistic errors. The purpose of this work was to develop a simulation algorithm that intentionally injects errors of varying magnitudes into clinically accepted contours and produces realistic contours with different levels of variability.
We used a dataset of CT scans from 14 prostate cancer patients with clinician-drawn contours of the regions of interest (ROI) of the prostate, bladder, and rectum. Using our newly developed Parametric Delineation Uncertainties Contouring (PDUC) model, we automatically generated alternative, realistic contours. The PDUC model consists of the contrast-based DU generator and a 3D smoothing layer. The DU generator transforms contours (deformation, contraction, and/or expansion) as a function of image contrast. The generated contours undergo 3D smoothing to obtain a realistic look. After model building, the first batch of auto-generated contours was reviewed. Editing feedback from the reviews was then used in a filtering model for the auto-selection of clinically acceptable (minor-editing) DU contours.
Overall, C values of 5 and 50 consistently produced high proportions of minor-editing contours across all ROI compared to the other C values (0.936 0.111 and 0.552 0.228, respectively). The model performed best on the bladder, which had the highest proportion of minor-editing contours (0.606) of the three ROI. In addition, the classification AUC for the filtering model across all three ROI is 0.724 0.109.
The proposed methodology and subsequent results are promising and could have a great impact on treatment planning by generating mathematically simulated alternative structures that are clinically relevant and realistic enough (i.e., similar to clinician-drawn contours) to be used in quality control of radiation therapy.
轮廓勾画的变异性导致放射治疗计划和治疗结果的巨大差异。开发和测试自动检测轮廓勾画错误的工具需要一个包含清晰和现实错误的轮廓来源。这项工作的目的是开发一种模拟算法,该算法有意将不同大小的误差注入到临床接受的轮廓中,并生成具有不同变异性水平的现实轮廓。
我们使用了一组来自 14 名前列腺癌患者的 CT 扫描数据集,这些患者的感兴趣区域(ROI)的轮廓由临床医生绘制,包括前列腺、膀胱和直肠。我们使用新开发的基于参数的勾画不确定性勾画(PDUC)模型,自动生成替代的、现实的轮廓。PDUC 模型由基于对比度的 DU 生成器和一个 3D 平滑层组成。DU 生成器根据图像对比度转换轮廓(变形、收缩和/或扩展)。生成的轮廓经过 3D 平滑处理,以获得真实的外观。在模型构建后,我们审查了第一批自动生成的轮廓。然后,将来自审查的编辑反馈用于自动选择临床可接受(小编辑)DU 轮廓的过滤模型。
总体而言,与其他 C 值(分别为 0.936 0.111 和 0.552 0.228)相比,C 值为 5 和 50 的轮廓生成了所有 ROI 中具有小编辑轮廓的高比例。该模型在三个 ROI 中膀胱的表现最好,具有最高比例的小编辑轮廓(0.606)。此外,过滤模型在所有三个 ROI 中的分类 AUC 为 0.724 0.109。
所提出的方法和随后的结果是有希望的,并且可以通过生成具有数学模拟的替代结构对放射治疗的质量控制产生重大影响,这些替代结构在临床上是相关的,并且足够真实(即类似于临床医生绘制的轮廓)。