Key Laboratory of Display Materials and Photoelectric Devices, Ministry of Education, Tianjin Key Laboratory for Photoelectric Materials and Devices, National Demonstration Center for Experimental Function Materials Education, School of Material Science and Engineering, Tianjin University of Technology, Tianjin, 300384, China.
Nanoscale. 2023 May 11;15(18):8304-8312. doi: 10.1039/d2nr06654h.
Based on a rare-earth Gd atom with 4f electrons, through first-principles calculations, we demonstrate that a Janus 2H-GdIBr monolayer exhibits an intrinsic ferromagnetic (FM) semiconductor character with an indirect band gap of 0.75 eV, a high Curie temperature of 260 K, a significant magnetic moment of 8 per f.u. (f.u. = formula unit), in-plane magnetic anisotropy (IMA) and a large spontaneous valley polarization of 118 meV. The MAE, inter-atomic distance or angle, and can be efficiently modulated by in-plane strains and charge carrier doping. Under a strain range from -5% to 5% and charge carrier doping from -0.3 e to 0.3 e per f.u., the system still retains its FM ordering and the corresponding can be modulated by strains from 233 K to 281 K and by charge carrier doping from 140 K to 245 K. Interestingly, under various strains, the matrix element differences (d, d), (d, d) and (p, p) of Gd atoms dominate the MAE behaviors, which originates from the competition between the contributions of the Gd-d orbitals, Gd-p orbitals, and p orbitals of halogen atoms based on the second-order perturbation theory. Inequivalent Dirac valleys are not energetically degenerate due to the time-reversal symmetry breaking in the Janus 2H-GdIBr monolayer. A considerable valley gap between the Berry curvature at the K and K' points provides an opportunity to selectively control the valley freedom and states. External tensile (compressive) strain further increases (decreases) the valley gap up to a maximum (minimum) value of 158 (37) meV, indicating that the valley polarization in the Janus 2H-GdIBr monolayer is robust to external strains. This study provides a novel paradigm and platform to design spintronic devices for next-generation quantum information technology.
基于具有 4f 电子的稀土 Gd 原子,通过第一性原理计算,我们证明了 Janus 2H-GdIBr 单层具有本征铁磁(FM)半导体特性,具有 0.75eV 的间接带隙、260K 的居里温度、8 个 f.u.(f.u. = 分子式单位)的显著磁矩、面内各向异性磁矩(IMA)和 118meV 的大自发谷极化。MAE、原子间距离或角度以及 可以通过面内应变和载流子掺杂有效地调节。在应变范围从-5%到 5%和载流子掺杂从-0.3e 到 0.3e/f.u.,系统仍保持其 FM 有序,相应的 可以通过应变从 233K 到 281K 和通过载流子掺杂从 140K 到 245K 来调节。有趣的是,在各种应变下,Gd 原子的矩阵元差(d,d)、(d,d)和(p,p)主导着 MAE 行为,这源于基于二阶微扰理论的 Gd-d 轨道、Gd-p 轨道和卤素原子 p 轨道贡献之间的竞争。由于 Janus 2H-GdIBr 单层中时间反演对称性的破坏,不等价的狄拉克谷不在能量上简并。在 K 和 K'点处的 Berry 曲率之间存在可观的谷间隙,为选择性控制谷自由度和状态提供了机会。外加拉伸(压缩)应变进一步增加(减小)谷间隙,最大(最小)值为 158(37)meV,表明 Janus 2H-GdIBr 单层中的谷极化对外部应变具有鲁棒性。这项研究为设计下一代量子信息技术的自旋电子器件提供了一个新的范例和平台。