Suppr超能文献

中药方剂可视化:开发与可用性研究

Visualization of Traditional Chinese Medicine Formulas: Development and Usability Study.

作者信息

Wu Zhiyue, Peng Suyuan, Zhou Liang

机构信息

Institute of Medical Technology, Peking University, Beijing, China.

National Institute of Health Data Science, Peking University, Beijing, China.

出版信息

JMIR Form Res. 2023 Apr 21;7:e40805. doi: 10.2196/40805.

Abstract

BACKGROUND

Traditional Chinese medicine (TCM) formulas are combinations of Chinese herbal medicines. Knowledge of classic medicine formulas is the basis of TCM diagnosis and treatment and is the core of TCM inheritance. The large number and flexibility of medicine formulas make memorization difficult, and understanding their composition rules is even more difficult. The multifaceted and multidimensional properties of herbal medicines are important for understanding the formula; however, these are usually separated from the formula information. Furthermore, these data are presented as text and cannot be analyzed jointly and interactively.

OBJECTIVE

We aimed to devise a visualization method for TCM formulas that shows the composition of medicine formulas and the multidimensional properties of herbal medicines involved and supports the comparison of medicine formulas.

METHODS

A TCM formula visualization method with multiple linked views is proposed and implemented as a web-based tool after close collaboration between visualization and TCM experts. The composition of medicine formulas is visualized in a formula view with a similarity-based layout supporting the comparison of compositing herbs; a shared herb view complements the formula view by showing all overlaps of pair-wise formulas; and a dimensionality-reduction plot of herbs enables the visualization of multidimensional herb properties. The usefulness of the tool was evaluated through a usability study with TCM experts.

RESULTS

Our method was applied to 2 typical categories of medicine formulas, namely tonic formulas and heat-clearing formulas, which contain 20 and 26 formulas composed of 58 and 73 herbal medicines, respectively. Each herbal medicine has a 23-dimensional characterizing attribute. In the usability study, TCM experts explored the 2 data sets with our web-based tool and quickly gained insight into formulas and herbs of interest, as well as the overall features of the formula groups that are difficult to identify with the traditional text-based method. Moreover, feedback from the experts indicated the usefulness of the proposed method.

CONCLUSIONS

Our TCM formula visualization method is able to visualize and compare complex medicine formulas and the multidimensional attributes of herbal medicines using a web-based tool. TCM experts gained insights into 2 typical medicine formula categories using our method. Overall, the new method is a promising first step toward new TCM formula education and analysis methodologies.

摘要

背景

中药方剂是中药材的组合。经典方剂知识是中医诊疗的基础,也是中医传承的核心。方剂数量众多且具有灵活性,使得记忆困难,理解其组成规则更是难上加难。中药材的多方面和多维度特性对于理解方剂很重要;然而,这些特性通常与方剂信息相分离。此外,这些数据以文本形式呈现,无法进行联合和交互式分析。

目的

我们旨在设计一种中药方剂可视化方法,展示方剂的组成以及所涉及中药材的多维度特性,并支持方剂比较。

方法

在可视化专家与中医专家密切合作后,提出并实现了一种具有多个关联视图的中药方剂可视化方法,并将其作为基于网络的工具。方剂组成在方剂视图中可视化,采用基于相似度的布局以支持对组成药材的比较;共享药材视图通过展示两两方剂的所有重叠部分来补充方剂视图;药材的降维图能够可视化多维度的药材特性。通过与中医专家进行可用性研究来评估该工具的实用性。

结果

我们的方法应用于两类典型的方剂,即滋补方剂和清热方剂,分别包含20个和26个方剂,由58种和73种中药材组成。每种中药材都有一个23维的特征属性。在可用性研究中,中医专家使用我们基于网络的工具探索了这两个数据集,并迅速深入了解了感兴趣的方剂和药材,以及用传统基于文本的方法难以识别的方剂组的整体特征。此外,专家的反馈表明了所提方法的实用性。

结论

我们的中药方剂可视化方法能够使用基于网络的工具可视化和比较复杂的方剂以及中药材的多维度属性。中医专家通过我们的方法对两类典型的方剂类别有了深入了解。总体而言,这种新方法是迈向新型中药方剂教育和分析方法学的有前景的第一步。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c46a/10163399/46e35dfc3907/formative_v7i1e40805_fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验