Suppr超能文献

利用人工神经网络和时间序列评估新冠疫情对土耳其领空航空交通量的影响

Evaluation of the impact of Covid-19 on air traffic volume in Turkish airspace using artificial neural networks and time series.

机构信息

Graduate School of Natural and Applied Science, Ankara University, Ankara, Turkey.

Department of Statistics, Faculty of Sciences, Ankara University, Ankara, Turkey.

出版信息

Sci Rep. 2023 Apr 21;13(1):6551. doi: 10.1038/s41598-023-33784-x.

Abstract

In early 2020, the aviation sector was one of the business lines adversely affected by the Covid 19 outbreak that affected the whole world. As a result, some countries imposed travel restrictions. Following these restrictions, air traffic density has decreased significantly worldwide. Since air traffic density directly affects almost all operations in air transportation, analyzing these data is very essential. For this purpose, SARIMA models, one of the linear time series models, and multilayer perceptron model (MLP), one of the artificial neural network methods suitable for nonlinear modeling, were applied to the air traffic data regarding Turkish airspace between 2010 and 2019, and the actual air traffic density was compared with the forecasts obtained from these analyses. It is considered that the results of this study are essential for organizations conducting aviation operations to take into consideration while doing future planning.

摘要

2020 年初,航空业是受全球新冠疫情影响的业务线之一。因此,一些国家实施了旅行限制。随着这些限制的实施,全球航空交通密度显著下降。由于航空交通密度直接影响航空运输中的几乎所有运营,因此分析这些数据非常重要。为此,应用了 SARIMA 模型(一种线性时间序列模型)和多层感知器模型(MLP)(一种适合非线性建模的人工神经网络方法)来分析 2010 年至 2019 年期间土耳其领空的航空交通数据,并将实际航空交通密度与这些分析得出的预测进行比较。这项研究的结果被认为对进行航空运营的组织在进行未来规划时考虑非常重要。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/86e6/10121645/c2b764bce558/41598_2023_33784_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验