State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, Hubei, 430070, China.
College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, China.
Small Methods. 2023 Jul;7(7):e2201664. doi: 10.1002/smtd.202201664. Epub 2023 Apr 22.
Catalysts with FeNC moieties have demonstrated remarkable activity toward oxygen reduction reaction (ORR), but precise synthesis and configuration regulation of FeNC to achieve bi-functional catalytic sites for ORR and oxygen evolution reaction (OER) remain a great challenge. Herein, a pomegranate-like catalyst with optimized FeN configuration is designed. The unique framework affords a large surface area for sufficient active site exposure and abundant macroporous channels for mass transport. By twisting chemical bonds, the electronic structure of FeN is regulated, and the adsorption/desorption of oxygen species is facilitated. Compared to noble metal-based catalysts (Pt/C+IrO ), the optimized FeNC exhibits impressive onset potential (0.96 V versus reversible hydrogen electrode), larger limiting current density (5.85 mA cm ), and better long-term life for ORR, as well as, lower OER overpotential. When integrated into Zn-air batteries, it demonstrates a respectable peak power density (71.6 mW cm ) and ideal cycling stability (30 h), exceeding that of commercial Pt/C+IrO . The exploration offers a guideline for designing advanced bi-functional electrocatalysts.
具有 FeNC 部分的催化剂在氧还原反应 (ORR) 中表现出显著的活性,但精确合成和配置调节 FeNC 以实现 ORR 和析氧反应 (OER) 的双功能催化位点仍然是一个巨大的挑战。在此,设计了一种具有优化 FeN 配置的石榴状催化剂。独特的框架提供了大的表面积以充分暴露活性位点,并提供丰富的大孔通道以促进质量传输。通过扭转化学键,调节了 FeN 的电子结构,促进了氧物种的吸附/解吸。与贵金属基催化剂 (Pt/C+IrO )相比,优化的 FeNC 表现出令人印象深刻的起始电位 (相对于可逆氢电极为 0.96 V)、更大的极限电流密度 (5.85 mA cm )和更好的 ORR 长期寿命,以及更低的 OER 过电势。当集成到锌空气电池中时,它表现出令人尊敬的峰值功率密度 (71.6 mW cm )和理想的循环稳定性 (30 h),超过了商业 Pt/C+IrO 。该探索为设计先进的双功能电催化剂提供了指导。