Zhong Xiaofang, Li Qiongyu, Polacco Benjamin J, Patil Trupti, Marley Aaron, Foussard Helene, Khare Prachi, Vartak Rasika, Xu Jiewei, DiBerto Jeffrey F, Roth Bryan L, Eckhardt Manon, Zastrow Mark Von, Krogan Nevan J, Hüttenhain Ruth
Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA.
J. David Gladstone Institutes, San Francisco, CA 94158, USA.
bioRxiv. 2024 Apr 27:2023.04.11.536358. doi: 10.1101/2023.04.11.536358.
Proximity labeling (PL) through biotinylation coupled with mass spectrometry (MS) has emerged as a powerful technique for capturing spatial proteomes within living cells. Large-scale sample processing for proximity proteomics requires a workflow that minimizes hands-on time while enhancing quantitative reproducibility. Here, we present a scalable PL pipeline integrating automated enrichment of biotinylated proteins in a 96-well plate format. By combining this pipeline with an optimized quantitative MS acquisition method based on data-independent acquisition (DIA), we not only significantly increased sample throughput but also improved the reproducibility of protein identification and quantification. We applied this pipeline to delineate subcellular proteomes across various cellular compartments, including endosomes, late endosomes/lysosomes, the Golgi apparatus, and the plasma membrane. Moreover, employing 5HT serotonin receptor as a model, we investigated temporal changes of proximal interaction networks induced by the receptor's activation with serotonin. Finally, to demonstrate the applicability of our PL pipeline across multiple experimental conditions, we further modified the PL pipeline for reduced sample input amounts to accommodate CRISPR-based gene knockout, and assessed the dynamics of the 5HT network in response to the perturbation of selected proximal interactors. Importantly, the presented PL approach is universally applicable to PL proteomics using biotinylation-based PL enzymes, increasing both throughput and reproducibility of standard protocols.
通过生物素化结合质谱法(MS)进行的邻近标记(PL)已成为一种用于捕获活细胞内空间蛋白质组的强大技术。邻近蛋白质组学的大规模样品处理需要一种工作流程,该流程能最大限度地减少人工操作时间,同时提高定量重现性。在此,我们展示了一种可扩展的PL流程,该流程以96孔板形式集成了生物素化蛋白质的自动富集。通过将此流程与基于数据非依赖采集(DIA)的优化定量MS采集方法相结合,我们不仅显著提高了样品通量,还改善了蛋白质鉴定和定量的重现性。我们应用此流程描绘了跨各种细胞区室的亚细胞蛋白质组,包括内体、晚期内体/溶酶体、高尔基体和质膜。此外,以5-羟色胺(5HT)血清素受体为模型,我们研究了血清素激活该受体所诱导的近端相互作用网络的时间变化。最后,为了证明我们的PL流程在多种实验条件下的适用性,我们进一步修改了PL流程以减少样品输入量,以适应基于CRISPR的基因敲除,并评估了5HT网络对选定近端相互作用分子扰动的响应动态。重要的是,所展示的PL方法普遍适用于使用基于生物素化的PL酶的PL蛋白质组学,提高了标准方案的通量和重现性。