川崎病静脉注射免疫球蛋白耐药预测模型的 Meta 分析。

Prediction Models for Intravenous Immunoglobulin Resistance in Kawasaki Disease: A Meta-analysis.

机构信息

Department of Pediatrics, Tsugaruhoken Medical COOP Kensei Hospital, Hirosaki, Aomori, Japan.

Scientific Research WorkS Peer Support Group (SRWS-PSG), Osaka, Japan.

出版信息

Pediatrics. 2023 May 1;151(5). doi: 10.1542/peds.2022-059175.

Abstract

CONTEXT

Approximately 10% to 20% of patients with Kawasaki disease (KD) are refractory to initial intravenous immunoglobulin (IVIG) therapy. KD is mainly associated with coronary artery abnormalities.

OBJECTIVES

To identify and evaluate all developed prediction models for IVIG resistance in patients with KD and synthesize evidence from external validation studies that evaluated their predictive performances.

DATA SOURCES

PubMed Medline, Dialog Embase, the Cochrane Central Register of Controlled Trials, the World Health Organization International Clinical Trials Registry Platform, and ClinicalTrials.gov were searched from inception until October 5, 2021.

STUDY SELECTION

All cohort studies that reported patients diagnosed with KD who underwent an initial IVIG of 2 g/kg were selected.

DATA EXTRACTION

Study and patient characteristics and model performance measures. Two authors independently extracted data from the studies.

RESULTS

The Kobayashi, Egami, Sano, Formosa, and Harada scores were the only prediction models with 3 or more external validation of the161 model analyses in 48 studies. The summary C-statistics were 0.65 (95% confidence interval [CI]: 0.57-0.73), 0.63 (95% CI: 0.55-0.71), 0.58 (95% CI: 0.55-0.60), 0.50 (95% CI: 0.36-0.63), and 0.63 (95% CI: 0.44-0.78) for the Kobayashi, Egami, Sano, Formosa, and Harada models, respectively. All 5 models showed low positive predictive values (0.14-0.39) and high negative predictive values (0.85-0.92).

LIMITATIONS

Potential differences in the characteristics of the target population among studies and lack of assessment of calibrations.

CONCLUSIONS

None of the 5 prediction models with external validation accurately distinguished between patients with and without IVIG resistance.

摘要

背景

约 10%至 20%的川崎病(KD)患者对初始静脉注射免疫球蛋白(IVIG)治疗无反应。KD 主要与冠状动脉异常有关。

目的

确定并评估所有 KD 患者对 IVIG 耐药的预测模型,并综合来自外部验证研究的证据,评估其预测性能。

数据来源

从建库至 2021 年 10 月 5 日,检索了 PubMed Medline、Dialog Embase、Cochrane 中央对照试验注册库、世界卫生组织国际临床试验注册平台和 ClinicalTrials.gov。

研究选择

所有报告接受 2 g/kg 初始 IVIG 治疗的 KD 患者的队列研究均被纳入。

数据提取

研究和患者特征以及模型性能指标。两位作者独立地从研究中提取数据。

结果

在 48 项研究的 161 项模型分析中,Kobayashi、Egami、Sano、Formosa 和 Harada 评分是仅有的 3 项或更多项外部验证的预测模型。汇总 C 统计量分别为 0.65(95%置信区间[CI]:0.57-0.73)、0.63(95%CI:0.55-0.71)、0.58(95%CI:0.55-0.60)、0.50(95%CI:0.36-0.63)和 0.63(95%CI:0.44-0.78)。Kobayashi、Egami、Sano、Formosa 和 Harada 模型的阳性预测值均较低(0.14-0.39),阴性预测值均较高(0.85-0.92)。

局限性

研究之间目标人群的特征可能存在差异,且缺乏对校准的评估。

结论

在有外部验证的 5 个预测模型中,均不能准确区分 IVIG 耐药和非耐药患者。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索