Department of Organic Chemistry, Faculty of Pharmacy with the Division of Laboratory Medicine, Medical University of Bialystok, Mickiewicza 2A, 15-222, Bialystok, Poland.
Faculty of Chemistry, University of Bialystok, Ciolkowskiego 1K, 15-245, Bialystok, Poland.
Sci Rep. 2023 Apr 24;13(1):6606. doi: 10.1038/s41598-023-33874-w.
Herein, we report the functionalization of carbon nano-onions (CNOs) with the hydroxyaryl group and subsequent modifications with resins: resorcinol-formaldehyde using porogenic Pluronic F-127, resorcinol-formaldehyde-melamine, benzoxazine made of bisphenol A and triethylenetetramine, and calix[4]resorcinarene-derived using F-127. Following the direct carbonization, extensive physicochemical analysis was carried out, including Fourier transform infrared, Raman and X-ray photoelectron spectroscopy, scanning and transmission electron microscopy, and adsorption-desorption of N. The addition of CNO to the materials significantly increases the total pore volume (up to 0.932 cm g for carbonized resorcinol-formaldehyde resin and CNO (RF-CNO-C) and 1.242 cm g for carbonized resorcinol-formaldehyde-melamine resin and CNO (RFM-CNO-C)), with mesopores dominating. However, the synthesized materials have poorly ordered domains with some structural disturbance; the RFM-CNO-C composite shows a more ordered structure with amorphous and semi-crystalline regions. Subsequently, cyclic voltammetry and galvanostatic charge-discharge method studied the electrochemical properties of all materials. The influence of resins' compositions, CNO content, and amount of N atoms in carbonaceous skeleton on the electrochemical performance was studied. In all cases, adding CNO to the material improves its electrochemical properties. The carbon material derived from CNO, resorcinol and melamine (RFM-CNO-C) showed the highest specific capacitance of 160 F g at a current density of 2 A g, which is stable after 3000 cycles. The RFM-CNO-C electrode retains approximately 97% of its initial capacitive efficiency. The electrochemical performance of the RFM-CNO-C electrode results from the hierarchical porosity's stability and the presence of nitrogen atoms in the skeleton. This material is an optimal solution for supercapacitor devices.
在此,我们报告了碳纳米洋葱(CNOs)与羟基芳基的功能化,以及随后与树脂的修饰:使用致孔剂 Pluronic F-127 的间苯二酚-甲醛、间苯二酚-甲醛-三聚氰胺、由双酚 A 和三乙烯四胺制成的苯并恶嗪,以及使用 F-127 的杯[4]间苯二酚衍生的树脂。在直接碳化后,进行了广泛的物理化学分析,包括傅里叶变换红外、拉曼和 X 射线光电子能谱、扫描和透射电子显微镜以及 N 的吸附-解吸。CNO 的添加显著增加了材料的总孔体积(对于碳化间苯二酚-甲醛树脂和 CNO(RF-CNO-C)可达 0.932 cm g,对于碳化间苯二酚-甲醛-三聚氰胺树脂和 CNO(RFM-CNO-C)可达 1.242 cm g),以介孔为主。然而,合成材料具有较差的有序域和一些结构干扰;RFM-CNO-C 复合材料具有更有序的结构,具有无定形和半晶区。随后,循环伏安法和恒电流充放电法研究了所有材料的电化学性能。研究了树脂组成、CNO 含量和碳骨架中氮原子数量对电化学性能的影响。在所有情况下,向材料中添加 CNO 都会改善其电化学性能。源自 CNO、间苯二酚和三聚氰胺的碳材料(RFM-CNO-C)在电流密度为 2 A g 时表现出最高的比电容 160 F g,在 3000 次循环后仍然稳定。RFM-CNO-C 电极保留了约 97%的初始电容效率。RFM-CNO-C 电极的电化学性能源自分层孔隙率的稳定性和骨架中氮原子的存在。这种材料是超级电容器器件的最佳解决方案。