Suppr超能文献

使用靶向 RNA 测序在非小细胞肺癌中检测多种类型的癌症驱动突变。

Detection of multiple types of cancer driver mutations using targeted RNA sequencing in non-small cell lung cancer.

机构信息

Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Medical College of Soochow University, Suzhou, China.

Institute of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China.

出版信息

Cancer. 2023 Aug 1;129(15):2422-2430. doi: 10.1002/cncr.34804. Epub 2023 Apr 25.

Abstract

BACKGROUND

DNA-based next-generation sequencing has been widely used in the selection of target therapies for patients with nonsmall cell lung cancer (NSCLC). RNA-based next-generation sequencing has been proven to be valuable in detecting fusion and exon-skipping mutations and is recommended by National Comprehensive Cancer Network guidelines for these mutation types.

METHODS

The authors developed an RNA-based hybridization panel targeting actionable driver oncogenes in solid tumors. Experimental and bioinformatics pipelines were optimized for the detection of fusions, single-nucleotide variants (SNVs), and insertion/deletion (indels). In total, 1253 formalin-fixed, paraffin-embedded samples from patients with NSCLC were analyzed by DNA and RNA panel sequencing in parallel to assess the performance of the RNA panel in detecting multiple types of mutations.

RESULTS

In analytical validation, the RNA panel achieved a limit of detection of 1.45-3.15 copies per nanogram for SNVs and 0.21-6.48 copies per nanogram for fusions. In 1253 formalin-fixed, paraffin-embedded NSCLC samples, the RNA panel identified a total of 124 fusion events and 26 MET exon 14-skipping events, in which 14 fusions and six MET exon 14-skipping mutations were missed by DNA panel sequencing. By using the DNA panel as the reference, the positive percent agreement and the positive predictive value of the RNA panel were 98.08% and 98.62%, respectively, for detecting targetable SNVs and 98.15% and 99.38%, respectively, for detecting targetable indels.

CONCLUSIONS

Parallel DNA and RNA sequencing analyses demonstrated the accuracy and robustness of the RNA sequencing panel in detecting multiple types of clinically actionable mutations. The simplified experimental workflow and low sample consumption will make RNA panel sequencing a potentially effective method in clinical testing.

摘要

背景

基于 DNA 的下一代测序已广泛用于选择非小细胞肺癌 (NSCLC) 患者的靶向治疗。基于 RNA 的下一代测序已被证明在检测融合和外显子跳跃突变方面具有价值,并被国家综合癌症网络指南推荐用于这些突变类型。

方法

作者开发了一种针对实体瘤中可操作的驱动致癌基因的基于 RNA 的杂交面板。实验和生物信息学管道经过优化,可用于检测融合、单核苷酸变异 (SNV) 和插入/缺失 (indel)。总共对 1253 例来自 NSCLC 患者的福尔马林固定、石蜡包埋样本进行了 DNA 和 RNA 面板测序分析,以评估 RNA 面板在检测多种类型突变方面的性能。

结果

在分析验证中,RNA 面板对 SNV 的检测下限为 1.45-3.15 个拷贝/纳克,对融合的检测下限为 0.21-6.48 个拷贝/纳克。在 1253 例福尔马林固定、石蜡包埋的 NSCLC 样本中,RNA 面板总共鉴定出 124 个融合事件和 26 个 MET 外显子 14 跳跃事件,其中 14 个融合和 6 个 MET 外显子 14 跳跃突变被 DNA 面板测序遗漏。以 DNA 面板作为参考,RNA 面板对检测可靶向 SNV 的阳性百分比一致率和阳性预测值分别为 98.08%和 98.62%,对检测可靶向 indel 的阳性百分比一致率和阳性预测值分别为 98.15%和 99.38%。

结论

平行的 DNA 和 RNA 测序分析表明,RNA 测序面板在检测多种类型的临床可靶向突变方面具有准确性和稳健性。简化的实验工作流程和低样本消耗将使 RNA 面板测序成为临床检测中一种潜在有效的方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验