文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

材料硬度与巨噬细胞旁分泌信号协同决定间充质干细胞的腱细胞分化。

Material Stiffness in Cooperation with Macrophage Paracrine Signals Determines the Tenogenic Differentiation of Mesenchymal Stem Cells.

机构信息

School of Medicine, Southeast University, Nanjing, 210009, P. R. China.

Center for Stem Cell and Regenerative Medicine, Southeast University, Nanjing, 210009, P. R. China.

出版信息

Adv Sci (Weinh). 2023 Jun;10(17):e2206814. doi: 10.1002/advs.202206814. Epub 2023 Apr 25.


DOI:10.1002/advs.202206814
PMID:37097733
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10265049/
Abstract

Stiffness is an important physical property of biomaterials that determines stem cell fate. Guiding stem cell differentiation via stiffness modulation has been considered in tissue engineering. However, the mechanism by which material stiffness regulates stem cell differentiation into the tendon lineage remains controversial. Increasing evidence demonstrates that immune cells interact with implanted biomaterials and regulate stem cell behaviors via paracrine signaling; however, the role of this mechanism in tendon differentiation is not clear. In this study, polydimethylsiloxane (PDMS) substrates with different stiffnesses are developed, and the tenogenic differentiation of mesenchymal stem cells (MSCs) exposed to different stiffnesses and macrophage paracrine signals is investigated. The results reveal that lower stiffnesses facilitates tenogenic differentiation of MSCs, while macrophage paracrine signals at these stiffnesses suppress the differentiation. When exposed to these two stimuli, MSCs still exhibit enhanced tendon differentiation, which is further elucidated by global proteomic analysis. Following subcutaneous implantation in rats for 2 weeks, soft biomaterial induces only low inflammation and promotes tendon-like tissue formation. In conclusion, the study demonstrates that soft, rather than stiff, material has a greater potential to guide tenogenic differentiation of stem cells, which provides comprehensive evidence for optimized bioactive scaffold design in tendon tissue engineering.

摘要

刚性是生物材料的一个重要物理特性,它决定了干细胞的命运。通过调节刚度来引导干细胞分化已在组织工程中得到了考虑。然而,材料刚度如何调节干细胞向肌腱谱系分化的机制仍存在争议。越来越多的证据表明,免疫细胞与植入的生物材料相互作用,并通过旁分泌信号调节干细胞的行为;然而,这种机制在肌腱分化中的作用尚不清楚。在这项研究中,开发了具有不同刚度的聚二甲基硅氧烷(PDMS)基底,并研究了暴露于不同刚度和巨噬细胞旁分泌信号的间充质干细胞(MSCs)的肌腱分化。结果表明,较低的刚度有利于 MSCs 的肌腱分化,而这些刚度下的巨噬细胞旁分泌信号则抑制分化。当暴露于这两种刺激时,MSCs 仍然表现出增强的肌腱分化,这通过全局蛋白质组学分析进一步阐明。在大鼠皮下植入 2 周后,柔软的生物材料仅引起低度炎症,并促进类似肌腱的组织形成。总之,该研究表明,软材料而非硬材料更有可能指导干细胞的肌腱分化,这为肌腱组织工程中优化的生物活性支架设计提供了全面的证据。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ac14/10265049/3d9a65cc53fd/ADVS-10-2206814-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ac14/10265049/777777b7ae79/ADVS-10-2206814-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ac14/10265049/8126ad843f25/ADVS-10-2206814-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ac14/10265049/e568bfef440e/ADVS-10-2206814-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ac14/10265049/ac86f42450eb/ADVS-10-2206814-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ac14/10265049/98032e4832e5/ADVS-10-2206814-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ac14/10265049/c78cfe1de45b/ADVS-10-2206814-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ac14/10265049/3d9a65cc53fd/ADVS-10-2206814-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ac14/10265049/777777b7ae79/ADVS-10-2206814-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ac14/10265049/8126ad843f25/ADVS-10-2206814-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ac14/10265049/e568bfef440e/ADVS-10-2206814-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ac14/10265049/ac86f42450eb/ADVS-10-2206814-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ac14/10265049/98032e4832e5/ADVS-10-2206814-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ac14/10265049/c78cfe1de45b/ADVS-10-2206814-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ac14/10265049/3d9a65cc53fd/ADVS-10-2206814-g006.jpg

相似文献

[1]
Material Stiffness in Cooperation with Macrophage Paracrine Signals Determines the Tenogenic Differentiation of Mesenchymal Stem Cells.

Adv Sci (Weinh). 2023-6

[2]
Cell-material interactions in tendon tissue engineering.

Acta Biomater. 2018-2-4

[3]
Paracrine interactions between mesenchymal stem cells affect substrate driven differentiation toward tendon and bone phenotypes.

PLoS One. 2012-2-15

[4]
Tendon tissue engineering: Current progress towards an optimized tenogenic differentiation protocol for human stem cells.

Acta Biomater. 2022-6

[5]
Tenocyte-imprinted substrate: a topography-based inducer for tenogenic differentiation in adipose tissue-derived mesenchymal stem cells.

Biomed Mater. 2020-4-16

[6]
Microgrooved topographical surface directs tenogenic lineage specific differentiation of mouse tendon derived stem cells.

Biomed Mater. 2017-1-10

[7]
Stepwise Differentiation of Mesenchymal Stem Cells Augments Tendon-Like Tissue Formation and Defect Repair In Vivo.

Stem Cells Transl Med. 2016-8

[8]
Tenogenic differentiation of human MSCs induced by the topography of electrochemically aligned collagen threads.

Biomaterials. 2011-12-15

[9]
Substrate Stiffness Modulates the Crosstalk Between Mesenchymal Stem Cells and Macrophages.

J Biomech Eng. 2021-3-1

[10]
Tenocyte-derived exosomes induce the tenogenic differentiation of mesenchymal stem cells through TGF-β.

Cytotechnology. 2019-2

引用本文的文献

[1]
Healing of tendon-related diseases: insights from macrophage regulation.

Mil Med Res. 2025-8-4

[2]
The effects of matrix stiffness on immune cells in bone biology.

Mechanobiol Med. 2024-2-22

[3]
Biomaterial Properties and Differentiation Strategies for Tenogenic Differentiation of Mesenchymal Stem Cells.

Cells. 2025-3-18

[4]
Mannose-Glycated Metal-Phenolic Microcapsules Orchestrate Phenotype Switch of Macrophages for Boosting Tumor Immunotherapy.

Adv Sci (Weinh). 2025-4

[5]
Oleanolic acid-based nanoparticles for the treatment of ulcerative colitis.

Nanomedicine (Lond). 2025-4

[6]
Stiffness Regulates the Morphology and Stemness of Limbal Niche Cells Through Unique nYAP/cYAP Translocation.

Invest Ophthalmol Vis Sci. 2025-2-3

[7]
Controlled TPCA-1 delivery engineers a pro-tenogenic niche to initiate tendon regeneration by targeting IKKβ/NF-κB signaling.

Bioact Mater. 2024-10-23

[8]
Stiffness and surface topology of silicone implants competitively mediate inflammatory responses of macrophages and foreign body response.

Mater Today Bio. 2024-10-18

[9]
Cisplatin-encapsulated TRAIL-engineered exosomes from human chorion-derived MSCs for targeted cervical cancer therapy.

Stem Cell Res Ther. 2024-11-4

[10]
The influence of biophysical niche on tumor-associated macrophages in liver cancer.

Hepatol Commun. 2024-11-1

本文引用的文献

[1]
The role of the immune microenvironment in bone, cartilage, and soft tissue regeneration: from mechanism to therapeutic opportunity.

Mil Med Res. 2022-11-19

[2]
Cellular modulation by the mechanical cues from biomaterials for tissue engineering.

Biomater Transl. 2021-12-28

[3]
Regulation of osteogenic differentiation by the pro-inflammatory cytokines IL-1β and TNF-α: current conclusions and controversies.

Hum Cell. 2022-7

[4]
Tendon tissue engineering: Current progress towards an optimized tenogenic differentiation protocol for human stem cells.

Acta Biomater. 2022-6

[5]
Multifunctional polyphenol-based silk hydrogel alleviates oxidative stress and enhances endogenous regeneration of osteochondral defects.

Mater Today Bio. 2022-4-9

[6]
A Biomaterial-Based Hedging Immune Strategy for Scarless Tendon Healing.

Adv Mater. 2022-5

[7]
Nonwoven-based gelatin/polycaprolactone membrane loaded with ERK inhibitor U0126 for treatment of tendon defects.

Stem Cell Res Ther. 2022-1-10

[8]
How vitamin E and its derivatives regulate tumour cells via the MAPK signalling pathway?'.

Gene. 2022-1-15

[9]
Effect of substrate stiffness on human intestinal enteroids' infectivity by enteroaggregative Escherichia coli.

Acta Biomater. 2021-9-15

[10]
Biomaterials strategies to balance inflammation and tenogenesis for tendon repair.

Acta Biomater. 2021-8

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索