Suppr超能文献

准备实施新型数字健康干预措施进行术后监测:系统评价和临床创新网络分析。

Readiness for implementation of novel digital health interventions for postoperative monitoring: a systematic review and clinical innovation network analysis.

机构信息

Centre for Medical Informatics, Usher Institute, University of Edinburgh, Edinburgh, UK.

Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA.

出版信息

Lancet Digit Health. 2023 May;5(5):e295-e315. doi: 10.1016/S2589-7500(23)00026-2.

Abstract

An increasing number of digital health interventions (DHIs) for remote postoperative monitoring have been developed and evaluated. This systematic review identifies DHIs for postoperative monitoring and evaluates their readiness for implementation into routine health care. Studies were defined according to idea, development, exploration, assessment, and long-term follow-up (IDEAL) stages of innovation. A novel clinical innovation network analysis used coauthorship and citations to examine collaboration and progression within the field. 126 DHIs were identified, with 101 (80%) being early stage innovations (IDEAL stage 1 and 2a). None of the DHIs identified had large-scale routine implementation. There is little evidence of collaboration, and there are clear omissions in the evaluation of feasibility, accessibility, and the health-care impact. Use of DHIs for postoperative monitoring remains at an early stage of innovation, with promising but generally low-quality supporting evidence. Comprehensive evaluation within high-quality, large-scale trials and real-world data are required to definitively establish readiness for routine implementation.

摘要

越来越多的数字健康干预措施(DHIs)已经被开发出来并用于远程术后监测。本系统评价旨在确定用于术后监测的 DHI,并评估其在常规医疗保健中实施的准备情况。研究根据创新的理念、开发、探索、评估和长期随访(IDEAL)阶段进行定义。采用一种新颖的临床创新网络分析方法,通过合著和引文来考察该领域内的协作和进展情况。共确定了 126 种 DHI,其中 101 种(80%)为早期创新(IDEAL 阶段 1 和 2a)。所确定的 DHI 均未进行大规模常规应用。协作的证据很少,在评估可行性、可及性和对医疗保健的影响方面也存在明显的遗漏。DHIs 用于术后监测仍处于创新的早期阶段,虽然有希望,但证据质量普遍较低。需要在高质量、大规模试验和真实世界数据中进行全面评估,以明确其是否准备好常规应用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验