Suppr超能文献

理解瞬态在线尖峰系统中的停留时间分布:建模、实验与模拟

Understanding the Residence Time Distribution in a Transient Inline Spiking System: Modeling, Experiments, and Simulations.

作者信息

Hwang Minsun, Wang Junsuk, Jung Seon Yeop

机构信息

Department of Chemical Engineering, Dankook University, Yongin-si 16890, Gyeonggi-do, Republic of Korea.

出版信息

Membranes (Basel). 2023 Mar 25;13(4):375. doi: 10.3390/membranes13040375.

Abstract

A transient inline spiking system is a promising tool for evaluating the performance of a virus filter in continuous operation. For better implementation of the system, we performed a systematic analysis to understand the residence time distribution (RTD) of inert tracers in the system. We aimed to understand the RTD of a salt spike, not retained onto or within the membrane pore, to focus on its mixing and spreading within the processing units. A concentrated NaCl solution was spiked into a feed stream as the spiking duration (tspike) was varied from 1 to 40 min. A static mixer was employed to mix the salt spike with the feed stream, which then passed through a single-layered nylon membrane inserted in a filter holder. The RTD curve was obtained by measuring the conductivity of the collected samples. An analytical model, the PFR-2CSTR model, was employed to predict the outlet concentration from the system. The slope and peak of the RTD curves were well-aligned with the experimental findings when τPFR = 4.3 min, τCSTR1 = 4.1 min, and τCSTR2 = 1.0 min. CFD simulations were performed to describe the flow and transport of the inert tracers through the static mixer and the membrane filter. The RTD curve spanned more than 30 min, much longer than tspike, since solutes were dispersed within processing units. The flow characteristics in each processing unit correlated with the RTD curves. Our detailed analysis of the transient inline spiking system would be helpful for implementing this protocol in continuous bioprocessing.

摘要

瞬态在线加标系统是评估病毒过滤器连续运行性能的一种很有前景的工具。为了更好地实施该系统,我们进行了系统分析,以了解惰性示踪剂在系统中的停留时间分布(RTD)。我们旨在了解未保留在膜孔上或膜孔内的盐加标的RTD,以关注其在处理单元内的混合和扩散情况。随着加标持续时间(tspike)从1分钟变化到40分钟,将浓NaCl溶液加入进料流中。使用静态混合器将盐加标与进料流混合,然后进料流通过插入过滤器支架的单层尼龙膜。通过测量收集样品的电导率获得RTD曲线。采用解析模型PFR - 2CSTR模型来预测系统的出口浓度。当τPFR = 4.3分钟、τCSTR1 = 4.1分钟和τCSTR2 = 1.0分钟时,RTD曲线的斜率和峰值与实验结果吻合良好。进行了计算流体动力学(CFD)模拟,以描述惰性示踪剂通过静态混合器和膜过滤器的流动和传输情况。由于溶质在处理单元内分散,RTD曲线跨度超过30分钟,远长于tspike。每个处理单元中的流动特性与RTD曲线相关。我们对瞬态在线加标系统的详细分析将有助于在连续生物加工中实施该方案。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f325/10143522/cf1e00a8b552/membranes-13-00375-g001.jpg

相似文献

3
Optimization of a continuous hybrid impeller mixer via computational fluid dynamics.
ScientificWorldJournal. 2014;2014:619474. doi: 10.1155/2014/619474. Epub 2014 Jul 13.
4
Evaluation of mixing performance and validation of CFD simulations in baffled anaerobic digesters using radiotracer technique.
Appl Radiat Isot. 2023 Feb;192:110570. doi: 10.1016/j.apradiso.2022.110570. Epub 2022 Nov 25.
5
Residence time distribution in continuous virus filtration.
Biotechnol Bioeng. 2024 Jun;121(6):1876-1888. doi: 10.1002/bit.28696. Epub 2024 Mar 17.
6
Investigation of aqueous phase dynamics in a uranium stripping unit using radioactive tracer.
Appl Radiat Isot. 2022 Nov;189:110404. doi: 10.1016/j.apradiso.2022.110404. Epub 2022 Aug 10.
7
Qualification of a novel inline spiking method for virus filter validation.
Biotechnol Prog. 2011 Jan-Feb;27(1):121-8. doi: 10.1002/btpr.500. Epub 2010 Sep 27.
8
Detailed modeling and process design of an advanced continuous powder mixer.
Int J Pharm. 2018 Dec 1;552(1-2):288-300. doi: 10.1016/j.ijpharm.2018.09.032. Epub 2018 Sep 27.
9
Residence time distribution (RTD) revisited.
Chem Eng Sci. 2021 Feb 2;230:116188. doi: 10.1016/j.ces.2020.116188. Epub 2020 Oct 4.
10
Effect of material properties on the residence time distribution (RTD) of a tablet press feed frame.
Int J Pharm. 2020 Dec 15;591:119961. doi: 10.1016/j.ijpharm.2020.119961. Epub 2020 Oct 10.

本文引用的文献

2
Virus filtration: A review of current and future practices in bioprocessing.
Biotechnol Bioeng. 2022 Mar;119(3):743-761. doi: 10.1002/bit.28017. Epub 2022 Jan 11.
3
Developments and opportunities in continuous biopharmaceutical manufacturing.
MAbs. 2021 Jan-Dec;13(1):1903664. doi: 10.1080/19420862.2021.1903664.
4
A common framework for integrated and continuous biomanufacturing.
Biotechnol Bioeng. 2021 Apr;118(4):1721-1735. doi: 10.1002/bit.27690. Epub 2021 Mar 1.
5
Adapting virus filtration to enable intensified and continuous monoclonal antibody processing.
Biotechnol Prog. 2021 Mar;37(2):e3088. doi: 10.1002/btpr.3088. Epub 2020 Dec 11.
6
Simulation of continuous low pH viral inactivation inside a coiled flow inverter.
Biotechnol Bioeng. 2020 Apr;117(4):1048-1062. doi: 10.1002/bit.27255. Epub 2020 Jan 17.
7
Simulation of pH level distribution inside a coiled flow inverter for continuous low pH viral inactivation.
Biotechnol Bioeng. 2020 Feb;117(2):429-437. doi: 10.1002/bit.27201. Epub 2019 Nov 12.
8
Advances in recombinant antibody manufacturing.
Appl Microbiol Biotechnol. 2016 Apr;100(8):3451-61. doi: 10.1007/s00253-016-7388-9. Epub 2016 Mar 3.
9
Continuous downstream processing for high value biological products: A Review.
Biotechnol Bioeng. 2016 Mar;113(3):465-75. doi: 10.1002/bit.25695. Epub 2015 Aug 27.
10
Model-based analysis and quantitative prediction of membrane chromatography: extreme scale-up from 0.08 ml to 1200 ml.
J Chromatogr A. 2014 Mar 7;1332:8-13. doi: 10.1016/j.chroma.2014.01.047. Epub 2014 Jan 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验