Suppr超能文献

胃源性人胰岛素分泌类器官可恢复葡萄糖稳态。

Stomach-derived human insulin-secreting organoids restore glucose homeostasis.

机构信息

Division of Regenerative Medicine and Hartman Institute for Therapeutic Organ Regeneration, Department of Medicine, Weill Cornell Medicine, New York, NY, USA.

Department of Endocrinology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China.

出版信息

Nat Cell Biol. 2023 May;25(5):778-786. doi: 10.1038/s41556-023-01130-y. Epub 2023 Apr 27.

Abstract

Gut stem cells are accessible by biopsy and propagate robustly in culture, offering an invaluable resource for autologous cell therapies. Insulin-producing cells can be induced in mouse gut, but it has not been possible to generate abundant and durable insulin-secreting cells from human gut tissues to evaluate their potential as a cell therapy for diabetes. Here we describe a protocol to differentiate cultured human gastric stem cells into pancreatic islet-like organoids containing gastric insulin-secreting (GINS) cells that resemble β-cells in molecular hallmarks and function. Sequential activation of the inducing factors NGN3 and PDX1-MAFA led human gastric stem cells onto a distinctive differentiation path, including a SOX4 endocrine and Galanin GINS precursor, before adopting β-cell identity, at efficiencies close to 70%. GINS organoids acquired glucose-stimulated insulin secretion in 10 days and restored glucose homeostasis for over 100 days in diabetic mice after transplantation, providing proof of concept for a promising approach to treat diabetes.

摘要

肠道干细胞可通过活检获得,并且在培养中大量增殖,为自体细胞治疗提供了宝贵的资源。在小鼠肠道中可以诱导产生胰岛素分泌细胞,但从人类肠道组织中产生丰富且持久的胰岛素分泌细胞一直难以实现,无法评估其作为糖尿病细胞治疗的潜力。本研究描述了一种方案,可将培养的人类胃干细胞分化为胰岛样类器官,其中包含类似于β细胞的分子特征和功能的胃胰岛素分泌(GINS)细胞。诱导因子 NGN3 和 PDX1-MAFA 的顺序激活使人类胃干细胞走上独特的分化途径,包括 SOX4 内分泌和甘丙肽 GINS 前体,然后再获得β细胞特性,效率接近 70%。GINS 类器官在 10 天内获得葡萄糖刺激的胰岛素分泌,并在移植后糖尿病小鼠中恢复葡萄糖稳态超过 100 天,为治疗糖尿病提供了一种很有前途的方法的概念验证。

相似文献

1
Stomach-derived human insulin-secreting organoids restore glucose homeostasis.
Nat Cell Biol. 2023 May;25(5):778-786. doi: 10.1038/s41556-023-01130-y. Epub 2023 Apr 27.
2
Generation of gastirc insulin-secreting organoids from human stomach sample.
Res Sq. 2023 Apr 27:rs.3.pex-2147. doi: 10.21203/rs.3.pex-2147/v1.
3
Long-Term Expansion of Pancreatic Islet Organoids from Resident Procr Progenitors.
Cell. 2020 Mar 19;180(6):1198-1211.e19. doi: 10.1016/j.cell.2020.02.048.
6
Development of Islet Organoids from H9 Human Embryonic Stem Cells in Biomimetic 3D Scaffolds.
Stem Cells Dev. 2017 Mar 15;26(6):394-404. doi: 10.1089/scd.2016.0115. Epub 2017 Jan 11.
7
A saponin from astragalus promotes pancreatic ductal organoids differentiation into insulin-producing cells.
Phytomedicine. 2022 Jul 20;102:154190. doi: 10.1016/j.phymed.2022.154190. Epub 2022 May 18.
8
Human embryonic stem cell differentiation into insulin secreting β-cells for diabetes.
Cell Biol Int. 2012 Nov 1;36(11):1013-20. doi: 10.1042/CBI20120210.
9
Generation of pancreatic insulin-producing cells from rhesus monkey induced pluripotent stem cells.
Diabetologia. 2011 Sep;54(9):2325-36. doi: 10.1007/s00125-011-2246-x. Epub 2011 Jul 14.
10
Forward programming of hiPSCs towards beta-like cells using Ngn3, Pdx1, and MafA.
Sci Rep. 2024 Jun 13;14(1):13608. doi: 10.1038/s41598-024-64346-4.

引用本文的文献

1
Organoids for tissue repair and regeneration.
Mater Today Bio. 2025 Jun 23;33:102013. doi: 10.1016/j.mtbio.2025.102013. eCollection 2025 Aug.
3
Intestinal secretory differentiation reflects niche-driven phenotypic and epigenetic plasticity of a common signal-responsive terminal cell.
Cell Stem Cell. 2025 Jun 5;32(6):952-969.e8. doi: 10.1016/j.stem.2025.03.005. Epub 2025 Apr 8.
5
Mechanistic insights and approaches for beta cell regeneration.
Nat Chem Biol. 2025 Jan 29. doi: 10.1038/s41589-024-01822-y.
6
Spatially defined microenvironment for engineering organoids.
Biophys Rev (Melville). 2024 Oct 18;5(4):041302. doi: 10.1063/5.0198848. eCollection 2024 Dec.
7
Gastrointestinal tract organoids as novel tools in drug discovery.
Front Pharmacol. 2024 Aug 30;15:1463114. doi: 10.3389/fphar.2024.1463114. eCollection 2024.
8
Emerging approaches for the development of artificial islets.
Smart Med. 2024 Mar 7;3(2):e20230042. doi: 10.1002/SMMD.20230042. eCollection 2024 Jun.
9
Ameliorating and refining islet organoids to illuminate treatment and pathogenesis of diabetes mellitus.
Stem Cell Res Ther. 2024 Jun 27;15(1):188. doi: 10.1186/s13287-024-03780-7.
10
Forward programming of hiPSCs towards beta-like cells using Ngn3, Pdx1, and MafA.
Sci Rep. 2024 Jun 13;14(1):13608. doi: 10.1038/s41598-024-64346-4.

本文引用的文献

1
Rapid establishment of human colonic organoid knockout lines.
STAR Protoc. 2022 Apr 12;3(2):101308. doi: 10.1016/j.xpro.2022.101308. eCollection 2022 Jun 17.
2
Insulin is expressed by enteroendocrine cells during human fetal development.
Nat Med. 2021 Dec;27(12):2104-2107. doi: 10.1038/s41591-021-01586-1. Epub 2021 Dec 9.
4
Follow your heart and trust your gut: Co-development of heart and gut tissue in organoids.
Cell Stem Cell. 2021 Dec 2;28(12):2037-2038. doi: 10.1016/j.stem.2021.09.003.
5
SATB2 preserves colon stem cell identity and mediates ileum-colon conversion via enhancer remodeling.
Cell Stem Cell. 2022 Jan 6;29(1):101-115.e10. doi: 10.1016/j.stem.2021.09.004. Epub 2021 Sep 27.
6
clusterProfiler 4.0: A universal enrichment tool for interpreting omics data.
Innovation (Camb). 2021 Jul 1;2(3):100141. doi: 10.1016/j.xinn.2021.100141. eCollection 2021 Aug 28.
7
Selective deletion of human leukocyte antigens protects stem cell-derived islets from immune rejection.
Cell Rep. 2021 Aug 17;36(7):109538. doi: 10.1016/j.celrep.2021.109538.
8
Strategies for durable β cell replacement in type 1 diabetes.
Science. 2021 Jul 30;373(6554):516-522. doi: 10.1126/science.abh1657.
10
An organoid-based organ-repurposing approach to treat short bowel syndrome.
Nature. 2021 Apr;592(7852):99-104. doi: 10.1038/s41586-021-03247-2. Epub 2021 Feb 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验