Gómez-Mancebo M Belén, Fernández-Martínez Rodolfo, Ruiz-Perona Andrea, Rubio Verónica, Bastante Pablo, García-Pérez Fernando, Borlaf Fernando, Sánchez Miguel, Hamada Assia, Velasco Andrés, Ryu Yu Kyoung, Calle Fernando, Bonales Laura J, Quejido Alberto J, Martínez Javier, Rucandio Isabel
División de Química, Departamento de Tecnología (CIEMAT), Av. Complutense 40, 28040 Madrid, Spain.
Instituto de Sistemas Optoelectrónicos y Microtecnología, Universidad Politécnica de Madrid, Av. Complutense 30, 28040 Madrid, Spain.
Nanomaterials (Basel). 2023 Apr 17;13(8):1391. doi: 10.3390/nano13081391.
A way to obtain graphene-based materials on a large-scale level is by means of chemical methods for the oxidation of graphite to obtain graphene oxide (GO), in combination with thermal, laser, chemical and electrochemical reduction methods to produce reduced graphene oxide (rGO). Among these methods, thermal and laser-based reduction processes are attractive, due to their fast and low-cost characteristics. In this study, first a modified Hummer's method was applied to obtain graphite oxide (GrO)/graphene oxide. Subsequently, an electrical furnace, a fusion instrument, a tubular reactor, a heating plate, and a microwave oven were used for the thermal reduction, and UV and CO lasers were used for the photothermal and/or photochemical reduction. The chemical and structural characterizations of the fabricated rGO samples were performed by Brunauer-Emmett-Teller (BET), X-ray diffraction (XRD), scanning electron microscope (SEM) and Raman spectroscopy measurements. The analysis and comparison of the results revealed that the strongest feature of the thermal reduction methods is the production of high specific surface area, fundamental for volumetric energy applications such as hydrogen storage, whereas in the case of the laser reduction methods, a highly localized reduction is achieved, ideal for microsupercapacitors in flexible electronics.
一种大规模制备石墨烯基材料的方法是采用化学方法将石墨氧化以获得氧化石墨烯(GO),并结合热还原、激光还原、化学还原和电化学还原方法来制备还原氧化石墨烯(rGO)。在这些方法中,基于热和激光的还原工艺因其快速和低成本的特点而具有吸引力。在本研究中,首先采用改进的Hummer法获得氧化石墨(GrO)/氧化石墨烯。随后,使用电炉、熔融仪器、管式反应器、加热板和微波炉进行热还原,并使用紫外激光和CO激光进行光热和/或光化学还原。通过布鲁诺尔-埃米特-泰勒(BET)法、X射线衍射(XRD)、扫描电子显微镜(SEM)和拉曼光谱测量对制备的rGO样品进行化学和结构表征。结果的分析和比较表明,热还原方法的最大特点是产生高比表面积,这对于诸如储氢等体积能量应用至关重要;而对于激光还原方法,可实现高度局部化的还原,这对于柔性电子中的微型超级电容器来说是理想的。