文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

与均苯三甲酸交联的壳聚糖水凝胶用于癌症治疗中5-氟尿嘧啶的递送

Chitosan Hydrogels Cross-Linked with Trimesic Acid for the Delivery of 5-Fluorouracil in Cancer Therapy.

作者信息

Emani Sravani, Vangala Anil, Buonocore Federico, Yarandi Niousha, Calabrese Gianpiero

机构信息

School of Life Sciences, Pharmacy and Chemistry, Kingston University London, Kingston-upon-Thames KTI 2EE, UK.

出版信息

Pharmaceutics. 2023 Mar 28;15(4):1084. doi: 10.3390/pharmaceutics15041084.


DOI:10.3390/pharmaceutics15041084
PMID:37111570
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10143928/
Abstract

Chitosan exhibits unique properties making it a suitable material for drug delivery. Considering the rising popularity of hydrogels in this field, this work offers a comprehensive study of hydrogels constituted by chitosan and cross-linked with 1,3,5-benzene tricarboxylic acid (BTC; also known as trimesic acid). Hydrogels were prepared by cross-linking chitosan with BTC in different concentrations. The nature of the gels was studied through oscillatory amplitude strain and frequency sweep tests within the linear viscoelastic region (LVE) limit. The flow curves of the gels revealed shear thinning behavior. High G' values imply strong cross-linking with improved stability. The rheological tests revealed that the strength of the hydrogel network increased with the cross-linking degree. Hardness, cohesiveness, adhesiveness, compressibility, and elasticity of the gels were determined using a texture analyzer. The scanning electron microscopy (SEM) data of the cross-linked hydrogels showed distinctive pores with a pore size increasing according to increasing concentrations (pore size range between 3-18 µm). Computational analysis was performed by docking simulations between chitosan and BTC. Drug release studies employing 5-fluorouracil (5-FU) yielded a more sustained release profile with 35 to 50% release among the formulations studied in a 3 h period. Overall, this work demonstrated that the presence of BTC as cross-linker leads to satisfactory mechanical properties of the chitosan hydrogel, suggesting potential applications in the sustained release of cancer therapeutics.

摘要

壳聚糖具有独特的性质,使其成为一种适合药物递送的材料。鉴于水凝胶在该领域的日益普及,这项工作对由壳聚糖构成并与1,3,5-苯三甲酸(BTC;也称为偏苯三甲酸)交联的水凝胶进行了全面研究。通过将壳聚糖与不同浓度的BTC交联来制备水凝胶。通过在线性粘弹性区域(LVE)极限内进行振荡振幅应变和频率扫描测试来研究凝胶的性质。凝胶的流动曲线显示出剪切变稀行为。高G'值意味着更强的交联和更高的稳定性。流变学测试表明,水凝胶网络的强度随着交联度的增加而增加。使用质地分析仪测定凝胶的硬度、内聚性、粘附性、压缩性和弹性。交联水凝胶的扫描电子显微镜(SEM)数据显示出独特的孔隙,孔隙尺寸随着浓度的增加而增大(孔隙尺寸范围在3-18 µm之间)。通过壳聚糖和BTC之间的对接模拟进行计算分析。采用5-氟尿嘧啶(5-FU)的药物释放研究在3小时内研究的制剂中产生了更持续的释放曲线,释放率为35%至50%。总体而言,这项工作表明,作为交联剂的BTC的存在导致壳聚糖水凝胶具有令人满意的机械性能,表明其在癌症治疗药物的持续释放方面具有潜在应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c0c1/10143928/c5c1411b63a3/pharmaceutics-15-01084-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c0c1/10143928/2667735ef9b5/pharmaceutics-15-01084-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c0c1/10143928/af37deede40b/pharmaceutics-15-01084-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c0c1/10143928/a511d96d83f4/pharmaceutics-15-01084-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c0c1/10143928/f5f642f7859d/pharmaceutics-15-01084-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c0c1/10143928/2d02ccf1df66/pharmaceutics-15-01084-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c0c1/10143928/da6c8568bf48/pharmaceutics-15-01084-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c0c1/10143928/55bc0bb693de/pharmaceutics-15-01084-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c0c1/10143928/30f488f5cb76/pharmaceutics-15-01084-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c0c1/10143928/c8ebb7fd5c4b/pharmaceutics-15-01084-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c0c1/10143928/b6b4da564097/pharmaceutics-15-01084-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c0c1/10143928/df28c5a23d36/pharmaceutics-15-01084-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c0c1/10143928/ded95b74b76b/pharmaceutics-15-01084-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c0c1/10143928/c5c1411b63a3/pharmaceutics-15-01084-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c0c1/10143928/2667735ef9b5/pharmaceutics-15-01084-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c0c1/10143928/af37deede40b/pharmaceutics-15-01084-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c0c1/10143928/a511d96d83f4/pharmaceutics-15-01084-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c0c1/10143928/f5f642f7859d/pharmaceutics-15-01084-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c0c1/10143928/2d02ccf1df66/pharmaceutics-15-01084-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c0c1/10143928/da6c8568bf48/pharmaceutics-15-01084-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c0c1/10143928/55bc0bb693de/pharmaceutics-15-01084-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c0c1/10143928/30f488f5cb76/pharmaceutics-15-01084-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c0c1/10143928/c8ebb7fd5c4b/pharmaceutics-15-01084-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c0c1/10143928/b6b4da564097/pharmaceutics-15-01084-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c0c1/10143928/df28c5a23d36/pharmaceutics-15-01084-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c0c1/10143928/ded95b74b76b/pharmaceutics-15-01084-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c0c1/10143928/c5c1411b63a3/pharmaceutics-15-01084-g013.jpg

相似文献

[1]
Chitosan Hydrogels Cross-Linked with Trimesic Acid for the Delivery of 5-Fluorouracil in Cancer Therapy.

Pharmaceutics. 2023-3-28

[2]
pH/Thermo-Dual Responsive Tunable In Situ Cross-Linkable Depot Injectable Hydrogels Based on Poly(N-Isopropylacrylamide)/Carboxymethyl Chitosan with Potential of Controlled Localized and Systemic Drug Delivery.

AAPS PharmSciTech. 2019-2-21

[3]
Rheological study of genipin cross-linked chitosan hydrogels.

Biomacromolecules. 2007-12

[4]
Development and characterization of cross-linked gellan gum and retrograded starch blend hydrogels for drug delivery applications.

J Mech Behav Biomed Mater. 2017-1

[5]
Reversible pH-Sensitive Chitosan-Based Hydrogels. Influence of Dispersion Composition on Rheological Properties and Sustained Drug Delivery.

Polymers (Basel). 2018-4-1

[6]
In situ forming chitosan hydrogels prepared via ionic/covalent co-cross-linking.

Biomacromolecules. 2011-7-28

[7]
Composite chitosan hydrogels as advanced wound dressings with sustained ibuprofen release and suitable application characteristics.

Pharm Dev Technol. 2019-12-12

[8]
Chitosan based thermosensitive injectable hydrogels for controlled delivery of loxoprofen: development, characterization and in-vivo evaluation.

Int J Biol Macromol. 2019-2-6

[9]
A non-covalently cross-linked chitosan based hydrogel.

Int J Pharm. 1999-12-10

[10]
Polyacrylic acid polymers hydrogels intended to topical drug delivery: preparation and characterization.

Pharm Dev Technol. 2015-6

引用本文的文献

[1]
Crystal structure of tris-(2-methyl-1-imidazol-3-ium) benzene-1,3,5-tri-carboxyl-ate.

Acta Crystallogr E Crystallogr Commun. 2025-6-6

[2]
Evaluation of Carboxymethyl Chitosan-Genipin Hydrogels as Reservoir Systems for Suramin Delivery in Epithelial Tissues.

Gels. 2025-4-23

[3]
Synthesis and structure of tris-(2-methyl-1-imidazol-3-ium) 5-carb-oxy-benzene-1,3-di-carboxyl-ate 3,5-di-carb-oxy-benzoate.

Acta Crystallogr E Crystallogr Commun. 2025-3-11

[4]
Design and Characterization of Chitosan-Based Smart Injectable Hydrogel for Improved Sustained Release of Antinarcotics.

Pharmaceuticals (Basel). 2024-6-7

[5]
Intranasal Delivery of Carvedilol- and Quercetin-Encapsulated Cationic Nanoliposomes for Cardiovascular Targeting: Formulation and and Studies.

ACS Appl Bio Mater. 2024-5-20

[6]
Alginate-Chitosan Hydrogels Containing shRNA Plasmid for Inhibition of CTNNB1 Expression in Breast Cancer Cells.

Gels. 2023-7-4

[7]
Building Fucoidan/Agarose-Based Hydrogels as a Platform for the Development of Therapeutic Approaches against Diabetes.

Molecules. 2023-6-2

本文引用的文献

[1]
study of chitosan-based multi-responsive hydrogels as drug release vehicles: a preclinical study.

RSC Adv. 2019-10-1

[2]
Chitosan Nanoparticles for Antiviral Drug Delivery: A Novel Route for COVID-19 Treatment.

Int J Nanomedicine. 2021

[3]
Chitosan: An Overview of Its Properties and Applications.

Polymers (Basel). 2021-9-24

[4]
Injectable chitosan/collagen hydrogels nano-engineered with functionalized single wall carbon nanotubes for minimally invasive applications in bone.

Mater Sci Eng C Mater Biol Appl. 2021-9

[5]
Optimization of Novel Naproxen-Loaded Chitosan/Carrageenan Nanocarrier-Based Gel for Topical Delivery: Ex Vivo, Histopathological, and In Vivo Evaluation.

Pharmaceuticals (Basel). 2021-6-11

[6]
In-situ stable injectable collagen-based hydrogels for cell and growth factor delivery.

Materialia (Oxf). 2021-3

[7]
Agricultural and Biomedical Applications of Chitosan-Based Nanomaterials.

Nanomaterials (Basel). 2020-9-24

[8]
Application of fibrin-based hydrogels for nerve protection and regeneration after spinal cord injury.

J Biol Eng. 2020-8-3

[9]
Montmorillonite-based polyacrylamide hydrogel rings for controlled vaginal drug delivery.

Mater Sci Eng C Mater Biol Appl. 2019-12-28

[10]
Recent Advances in Chitosan-Based Carriers for Gene Delivery.

Mar Drugs. 2019-6-25

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索