Suppr超能文献

基于可逆神经网络的熔融沉积成型工艺参数预测

Process Parameter Prediction for Fused Deposition Modeling Using Invertible Neural Networks.

作者信息

Pelzer Lukas, Posada-Moreno Andrés Felipe, Müller Kai, Greb Christoph, Hopmann Christian

机构信息

Institute for Plastics Processing, RWTH Aachen University, 52074 Aachen, Germany.

Institute for Data Science in Mechanical Engineering, RWTH Aachen University, 52068 Aachen, Germany.

出版信息

Polymers (Basel). 2023 Apr 14;15(8):1884. doi: 10.3390/polym15081884.

Abstract

Additive manufacturing has revolutionized prototyping and small-scale production in the past years. By creating parts layer by layer, a tool-less production technology is established, which allows for rapid adaption of the manufacturing process and customization of the product. However, the geometric freedom of the technologies comes with a large number of process parameters, especially in Fused Deposition Modeling (FDM), all of which influence the resulting part's properties. Since those parameters show interdependencies and non-linearities, choosing a suitable set to create the desired part properties is not trivial. This study demonstrates the use of Invertible Neural Networks (INN) for generating process parameters objectively. By specifying the desired part in the categories of mechanical properties, optical properties and manufacturing time, the demonstrated INN generates process parameters capable of closely replicating the desired part. Validation trials prove the precision of the solution with measured properties achieving the desired properties to up to 99.96% and a mean accuracy of 85.34%.

摘要

在过去几年中,增材制造彻底改变了原型制作和小规模生产。通过逐层创建零件,一种无需工具的生产技术得以确立,这使得制造过程能够快速调整,产品也能够实现定制化。然而,这些技术在几何形状方面的自由度伴随着大量的工艺参数,尤其是在熔融沉积建模(FDM)中,所有这些参数都会影响最终零件的性能。由于这些参数呈现出相互依存关系和非线性,选择一组合适的参数来创建所需的零件性能并非易事。本研究展示了如何使用可逆神经网络(INN)来客观地生成工艺参数。通过在机械性能、光学性能和制造时间等类别中指定所需的零件,所展示的INN生成的工艺参数能够紧密复制所需的零件。验证试验证明了该解决方案的精度,测量的性能达到所需性能的比例高达99.96%,平均准确率为85.34%。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/99cc/10142370/a01c296f79fa/polymers-15-01884-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验