文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于脂质体的聚合物微针递送双重抗氧化剂药物的创新方法的开发与评估

Development and Evaluation of an Innovative Approach Using Niosomes Based Polymeric Microneedles to Deliver Dual Antioxidant Drugs.

作者信息

Zaid Alkilani Ahlam, Abo-Zour Hadeel, Basheer Haneen A, Abu-Zour Hana, Donnelly Ryan F

机构信息

Department of Pharmacy, Faculty of Pharmacy, Zarqa University, Zarqa 13110, Jordan.

Medical Biology Centre, School of Pharmacy, Queen's University Belfast, Belfast BT7 1NN, UK.

出版信息

Polymers (Basel). 2023 Apr 20;15(8):1962. doi: 10.3390/polym15081962.


DOI:10.3390/polym15081962
PMID:37112106
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10145612/
Abstract

Ascorbic acid (AA) and caffeine (CAFF) work to protect cells from ultraviolet (UV) radiation and slow down the photoaging process of the skin. However, cosmetic application of AA and CAFF is limited due to poor penetration across the skin and rapid oxidation of AA. The aim of this study was to design and evaluate the dermal delivery of dual antioxidants utilizing microneedles (MNs) loaded with AA and CAFF niosomes. The niosomal nanovesicles were prepared using the thin film method and had particle sizes ranging from 130.6-411.2 nm and a negative Zeta potential of around -35 mV. The niosomal formulation was then combined with polyvinylpyrrolidone (PVP) and polyethylene glycol 400 (PEG 400) to create an aqueous polymer solution. The best skin deposition of AA and CAFF was achieved with the formulation containing 5% PEG 400 (M3) and PVP. Furthermore, the role of AA and CAFF as antioxidants in preventing cancer formation has been well-established. Here we validated the antioxidant properties of ascorbic acid (AA) and caffeine (CAFF) in a novel niosomal formulation referred to as M3 by testing its ability to prevent HO-indued cell damage and apoptosis in MCF-7 breast cancer cells. Results showed that M3 was able to shield MCF-7 cells from HO induced damage at concentrations below 2.1 µg/mL for AA and 1.05 µg/mL for CAFF, and also exhibited anticancer effects at higher concentrations of 210 µg/mL for AA and 105 µg/mL. The formulations were stable for two months at room temperature in terms of moisture and drug content. The use of MNs and niosomal carriers could be a promising approach for dermal delivery of hydrophilic drugs like AA and CAFF.

摘要

抗坏血酸(AA)和咖啡因(CAFF)可保护细胞免受紫外线(UV)辐射,并减缓皮肤的光老化过程。然而,由于AA在皮肤中的渗透性差且易快速氧化,AA和CAFF在化妆品中的应用受到限制。本研究的目的是设计并评估利用负载AA和CAFF脂质体的微针(MNs)进行双抗氧化剂的真皮给药。脂质体纳米囊泡采用薄膜法制备,粒径范围为130.6 - 411.2 nm,Zeta电位约为 -35 mV。然后将脂质体制剂与聚乙烯吡咯烷酮(PVP)和聚乙二醇400(PEG 400)混合,制成水性聚合物溶液。含5% PEG 400(M3)和PVP的制剂实现了AA和CAFF在皮肤中的最佳沉积。此外,AA和CAFF作为抗氧化剂在预防癌症形成方面的作用已得到充分证实。在此,我们通过测试其预防HO诱导的MCF - 7乳腺癌细胞损伤和凋亡的能力,验证了新型脂质体制剂(称为M3)中抗坏血酸(AA)和咖啡因(CAFF)的抗氧化特性。结果表明,对于AA浓度低于2.1 µg/mL和CAFF浓度低于1.05 µg/mL时,M3能够保护MCF - 7细胞免受HO诱导的损伤,并且在AA浓度为210 µg/mL和CAFF浓度为105 µg/mL的较高浓度下也表现出抗癌作用。这些制剂在室温下的水分和药物含量方面可稳定保存两个月。使用MNs和脂质体载体可能是一种有前途的方法,用于亲水性药物如AA和CAFF的真皮给药。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/18c7/10145612/22b16b7129cd/polymers-15-01962-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/18c7/10145612/16ca7af38744/polymers-15-01962-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/18c7/10145612/7752a6f540b0/polymers-15-01962-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/18c7/10145612/6795ce535aee/polymers-15-01962-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/18c7/10145612/8eec665d2f8b/polymers-15-01962-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/18c7/10145612/fa7f7d3881b7/polymers-15-01962-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/18c7/10145612/d7118be768e5/polymers-15-01962-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/18c7/10145612/a1e5894a21d2/polymers-15-01962-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/18c7/10145612/4a20aaf27a7e/polymers-15-01962-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/18c7/10145612/22b16b7129cd/polymers-15-01962-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/18c7/10145612/16ca7af38744/polymers-15-01962-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/18c7/10145612/7752a6f540b0/polymers-15-01962-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/18c7/10145612/6795ce535aee/polymers-15-01962-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/18c7/10145612/8eec665d2f8b/polymers-15-01962-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/18c7/10145612/fa7f7d3881b7/polymers-15-01962-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/18c7/10145612/d7118be768e5/polymers-15-01962-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/18c7/10145612/a1e5894a21d2/polymers-15-01962-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/18c7/10145612/4a20aaf27a7e/polymers-15-01962-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/18c7/10145612/22b16b7129cd/polymers-15-01962-g009.jpg

相似文献

[1]
Development and Evaluation of an Innovative Approach Using Niosomes Based Polymeric Microneedles to Deliver Dual Antioxidant Drugs.

Polymers (Basel). 2023-4-20

[2]
Formulation and Evaluation of Niosomal Alendronate Sodium Encapsulated in Polymeric Microneedles: In Vitro Studies, Stability Study and Cytotoxicity Study.

Nanomaterials (Basel). 2022-10-12

[3]
Cytotoxic and Antioxidative Effects of Geranium Oil and Ascorbic Acid Coloaded in Niosomes against MCF-7 Breast Cancer Cells.

ACS Omega. 2023-6-13

[4]
Physicochemical properties and skin permeation of Span 60/Tween 60 niosomes of ellagic acid.

Int J Pharm. 2011-12-2

[5]
Fabrication and Appraisal of Simvastatin via Tailored Niosomal Nanovesicles for Transdermal Delivery Enhancement: In Vitro and In Vivo Assessment.

Pharmaceutics. 2021-1-21

[6]
Formulation and Evaluation of Azithromycin-Loaded Niosomal Gel: Optimization, In Vitro Studies, Rheological Characterization, and Cytotoxicity Study.

ACS Omega. 2022-10-25

[7]
Niosomal Nanocarriers for Enhanced Dermal Delivery of Epigallocatechin Gallate for Protection against Oxidative Stress of the Skin.

Pharmaceutics. 2022-3-28

[8]
Non-ionic surfactant vesicles as a carrier system for dermal delivery of (+)-Catechin and their antioxidant effects.

J Drug Target. 2021-3

[9]
Formulation and Evaluation of Niosomal in situ Nasal Gel of a Serotonin Receptor Agonist, Buspirone Hydrochloride for the Brain Delivery via Intranasal Route.

Pharm Nanotechnol. 2018

[10]
Magnesium ascorbyl phosphate vesicular carriers for topical delivery; preparation, in-vitro and ex-vivo evaluation, factorial optimization and clinical assessment in melasma patients.

Drug Deliv. 2022-12

引用本文的文献

[1]
Thermo-Responsive Niosomal In Situ Gels for Topical Delivery of Prednisolone.

AAPS PharmSciTech. 2025-4-29

[2]
Polylactic-Co-Glycolic Acid/Alginate/Neem Oil-Reduced Graphene Oxide as a pH-Sensitive Nanocarrier for Hesperidin Drug Delivery: Antimicrobial and Acute Otitis Media Assessments.

Pharmaceuticals (Basel). 2025-3-7

[3]
Fabrication of Thymoquinone and Ascorbic Acid-Loaded Spanlastics Gel for Hyperpigmentation: In Vitro Release, Cytotoxicity, and Skin Permeation Studies.

Pharmaceutics. 2025-1-2

[4]
Caffeine as an Active Molecule in Cosmetic Products for Hair Loss: Its Mechanisms of Action in the Context of Hair Physiology and Pathology.

Molecules. 2025-1-4

[5]
Microneedles mediated-dermal delivery of Vitamin C: Formulation, characterization, cytotoxicity, and enhancement of stability.

Heliyon. 2024-9-3

[6]
Current approaches in smart nano-inspired drug delivery: A narrative review.

Health Sci Rep. 2024-4-24

[7]
Breaking boundaries: the advancements in transdermal delivery of antibiotics.

Drug Deliv. 2024-12

[8]
Niosomal Delivery of Celecoxib and Metformin for Targeted Breast Cancer Treatment.

Cancers (Basel). 2023-10-16

本文引用的文献

[1]
Preparation and Characterization of Patch Loaded with Clarithromycin Nanovesicles for Transdermal Drug Delivery.

J Funct Biomater. 2023-1-19

[2]
Formulation and Evaluation of Azithromycin-Loaded Niosomal Gel: Optimization, In Vitro Studies, Rheological Characterization, and Cytotoxicity Study.

ACS Omega. 2022-10-25

[3]
Caffeine and Its Antioxidant Properties-It Is All about Dose and Source.

Int J Mol Sci. 2022-10-28

[4]
Formulation and Evaluation of Niosomal Alendronate Sodium Encapsulated in Polymeric Microneedles: In Vitro Studies, Stability Study and Cytotoxicity Study.

Nanomaterials (Basel). 2022-10-12

[5]
Improvement of ascorbic acid delivery into human skin via hyaluronic acid-coated niosomes.

J Microencapsul. 2022-9

[6]
Beneath the Skin: A Review of Current Trends and Future Prospects of Transdermal Drug Delivery Systems.

Pharmaceutics. 2022-5-28

[7]
Investigation and Optimization of Hydrogel Microneedles for Transdermal Delivery of Caffeine.

Tissue Eng Part C Methods. 2022-10

[8]
Niosomal Nanocarriers for Enhanced Dermal Delivery of Epigallocatechin Gallate for Protection against Oxidative Stress of the Skin.

Pharmaceutics. 2022-3-28

[9]
Improved solubility and corneal permeation of PEGylated curcumin complex used for the treatment of ophthalmic bacterial infections.

PLoS One. 2022

[10]
Particle Size Effect of Curcumin Nanocrystals on Transdermal and Transfollicular Penetration by Hyaluronic Acid-Dissolving Microneedle Delivery.

Pharmaceuticals (Basel). 2022-2-8

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索