Department of Information Sciences and Technology, School of Computing, George Mason University, Fairfax, VA 22030, USA.
Sensors (Basel). 2023 Apr 15;23(8):4016. doi: 10.3390/s23084016.
Predicting where users will look inside head-mounted displays (HMDs) and fetching only the relevant content is an effective approach for streaming bulky 360 videos over bandwidth-constrained networks. Despite previous efforts, anticipating users' fast and sudden head movements is still difficult because there is a lack of clear understanding of the unique visual attention in 360 videos that dictates the users' head movement in HMDs. This in turn reduces the effectiveness of streaming systems and degrades the users' Quality of Experience. To address this issue, we propose to extract salient cues unique in the 360 video content to capture the attentive behavior of HMD users. Empowered by the newly discovered saliency features, we devise a head-movement prediction algorithm to accurately predict users' head orientations in the near future. A 360 video streaming framework that takes full advantage of the head movement predictor is proposed to enhance the quality of delivered 360 videos. Practical trace-driven results show that the proposed saliency-based 360 video streaming system reduces the stall duration by 65% and the stall count by 46%, while saving 31% more bandwidth than state-of-the-art approaches.
预测头戴式显示器 (HMD) 内用户将看向何处,并仅获取相关内容,这是在带宽受限的网络上流式传输庞大的 360 视频的有效方法。尽管之前已经做了很多努力,但预测用户快速而突然的头部运动仍然很困难,因为人们对决定 HMD 中用户头部运动的 360 视频中独特的视觉注意缺乏清晰的理解。这反过来又降低了流媒体系统的有效性,并降低了用户的体验质量。为了解决这个问题,我们建议提取 360 视频内容中独特的显著线索,以捕捉 HMD 用户的注意力行为。借助新发现的显著特征,我们设计了一种头部运动预测算法,以准确预测用户在不久的将来的头部方向。提出了一种充分利用头部运动预测器的 360 视频流媒体框架,以提高所提供的 360 视频的质量。实际的跟踪驱动结果表明,与最先进的方法相比,基于显著度的 360 视频流媒体系统将停顿持续时间减少了 65%,停顿次数减少了 46%,同时节省了 31%的带宽。