Menon Ipshita, Patil Smital, Bagwe Priyal, Vijayanand Sharon, Kale Akanksha, Braz Gomes Keegan, Kang Sang Moo, D'Souza Martin
Center for Drug Delivery Research, Vaccine Nanotechnology Laboratory, College of Pharmacy, Mercer University, Atlanta, GA 30341, USA.
Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA.
Vaccines (Basel). 2023 Apr 18;11(4):866. doi: 10.3390/vaccines11040866.
Respiratory syncytial virus (RSV) is one of the leading causes of bronchiolitis and pneumonia in children ages five years and below. Recent outbreaks of the virus have proven that RSV remains a severe burden on healthcare services. Thus, a vaccine for RSV is a need of the hour. Research on novel vaccine delivery systems for infectious diseases such as RSV can pave the road to more vaccine candidates. Among many novel vaccine delivery systems, a combined system with polymeric nanoparticles loaded in dissolving microneedles holds a lot of potential. In this study, the virus-like particles of the RSV fusion protein (F-VLP) were encapsulated in poly (D, L-lactide--glycolide) (PLGA) nanoparticles (NPs). These NPs were then loaded into dissolving microneedles (MNs) composed of hyaluronic acid and trehalose. To test the in vivo immunogenicity of the nanoparticle-loaded microneedles, Swiss Webster mice were immunized with the F-VLP NPs, both with and without adjuvant monophosphoryl lipid A (MPL) NPs loaded in the MN. The mice immunized with the F-VLP NP + MPL NP MN showed high immunoglobulin (IgG and IgG2a) levels both in the serum and lung homogenates. A subsequent analysis of lung homogenates post-RSV challenge revealed high IgA, indicating the generation of a mucosal immune response upon intradermal immunization. A flowcytometry analysis showed high CD8+ and CD4+ expression in the lymph nodes and spleens of the F-VLP NP + MPL NP MN-immunized mice. Thus, our vaccine elicited a robust humoral and cellular immune response in vivo. Therefore, PLGA nanoparticles loaded in dissolving microneedles could be a suitable novel delivery system for RSV vaccines.
呼吸道合胞病毒(RSV)是5岁及以下儿童毛细支气管炎和肺炎的主要病因之一。最近该病毒的爆发证明,RSV仍然是医疗服务的沉重负担。因此,开发RSV疫苗迫在眉睫。对RSV等传染病新型疫苗递送系统的研究可为更多候选疫苗铺平道路。在众多新型疫苗递送系统中,一种将聚合物纳米颗粒负载于可溶解微针中的组合系统具有很大潜力。在本研究中,RSV融合蛋白的病毒样颗粒(F-VLP)被包裹在聚(D,L-丙交酯-乙交酯)(PLGA)纳米颗粒(NPs)中。然后将这些NPs负载到由透明质酸和海藻糖组成的可溶解微针(MNs)中。为了测试负载纳米颗粒的微针的体内免疫原性,用F-VLP NPs对瑞士韦伯斯特小鼠进行免疫,微针中分别负载和不负载佐剂单磷酰脂质A(MPL)NPs。用F-VLP NP + MPL NP MN免疫的小鼠血清和肺匀浆中均显示出高免疫球蛋白(IgG和IgG2a)水平。对RSV攻击后的肺匀浆进行后续分析发现IgA水平很高,表明皮内免疫后产生了黏膜免疫反应。流式细胞术分析显示,用F-VLP NP + MPL NP MN免疫的小鼠淋巴结和脾脏中CD8 +和CD4 +表达较高。因此,我们的疫苗在体内引发了强大的体液和细胞免疫反应。所以,负载于可溶解微针中的PLGA纳米颗粒可能是一种适用于RSV疫苗的新型递送系统。
Vaccines (Basel). 2022-4-10
Pharmaceutics. 2024-2-17
Cytokine Growth Factor Rev. 2022-12
Nat Rev Immunol. 2022-10
Pharmaceutics. 2022-5-16