Suppr超能文献

电鱼中脑中的时间比较电路。II. 功能形态学。

A time-comparison circuit in the electric fish midbrain. II. Functional morphology.

作者信息

Carr C E, Maler L, Taylor B

出版信息

J Neurosci. 1986 May;6(5):1372-83. doi: 10.1523/JNEUROSCI.06-05-01372.1986.

Abstract

The weakly electric fish Eigenmannia is able to detect temporal disparities as small as 400 nsec between two signals from different parts of the body surface (Carr et al., 1986). The elements of this time-comparison circuit have been identified by EM reconstruction of its component cells. Information about the timing of the zero-crossing of signals on each area of the body surface is coded in phase-coder receptors, a subset of tuberous electroreceptors. Electroreceptors on the body surface are innervated by primary afferents with their central termination on the spherical cells of the medullary electrosensory lateral line lobe. These cells project to lamina VI of the midbrain torus, a structure similar to the inferior colliculus. Afferents entering lamina VI form a very restricted terminal arbor in which they synapse on the three cell types of this lamina. Each afferent makes gap-junction synapses on one or two giant cell somata and morphologically mixed synapses on the distal dendrites of two types of small cell. The afferent terminals thus encode the timing of the electric signal on a local patch of the body surface, forming a somatotopic map of the body surface in lamina VI. The giant cells are adendritic and their axonal arbor is such as to distribute timing information originating from one part of the body surface throughout lamina VI, so that each region of lamina VI receives information about the timing of zero-crossings from the entire body surface from giant cells, as well as information from a local portion of the body surface from the afferent terminals. The giant cells terminate exclusively on the cell bodies of the small cells of lamina VI, shown to be sensitive to small temporal disparities by Heiligenberg and Rose (1985). Thus, each small cell receives a single synapse on its soma from a giant cell that conveys phase-coding information from some portion of the body surface and receives local phase-coding input onto its dendrites from spherical cell afferents. The sensitivity of the small cells to temporal disparities appears to be conferred by their segregation of inputs from two different parts of the body surface onto dendrites and soma, respectively. We propose that the dendritic input acts as a delay line, and the small cell fires maximally when the inputs from the dendrites and the giant cell input onto the soma coincide.

摘要

弱电鱼裸背鳗能够检测到来自体表不同部位的两个信号之间小至400纳秒的时间差异(卡尔等人,1986年)。通过对其组成细胞进行电镜重建,已经确定了这个时间比较回路的组成部分。关于体表每个区域信号过零点时间的信息,是由相位编码感受器编码的,相位编码感受器是结节状电感受器的一个子集。体表的电感受器由初级传入神经支配,它们的中枢终末位于延髓电感觉侧线叶的球状细胞上。这些细胞投射到中脑半规管的第六层,这是一个类似于下丘的结构。进入第六层的传入神经形成一个非常局限的终末分支,在那里它们与该层的三种细胞类型形成突触。每个传入神经在一两个巨细胞的胞体上形成缝隙连接突触,并在两种小细胞的远端树突上形成形态学上混合的突触。传入神经终末因此在体表的局部区域编码电信号的时间,在第六层形成体表的躯体感觉图谱。巨细胞没有树突,它们的轴突分支能够将源自体表一部分的时间信息分布到整个第六层,这样第六层的每个区域都从巨细胞接收来自整个体表过零点时间的信息,以及从传入神经终末接收来自体表局部区域的信息。巨细胞仅终止于第六层小细胞的胞体上,海利根贝格和罗斯(1985年)证明这些小细胞对小的时间差异敏感。因此,每个小细胞在其胞体上从一个巨细胞接收单个突触,该巨细胞从体表的某个部分传递相位编码信息,并从球状细胞传入神经在其树突上接收局部相位编码输入。小细胞对时间差异的敏感性似乎是由它们将来自体表两个不同部分的输入分别隔离到树突和胞体上所赋予的。我们提出树突输入起到延迟线的作用,当来自树突的输入与来自巨细胞在胞体上的输入重合时,小细胞会产生最大放电。

相似文献

引用本文的文献

2
Morphology and receptive field organization of a temporal processing region in Apteronotus albifrons.白边拟鳄雀鳝中颞叶处理区域的形态和感受野组织。
J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2022 May;208(3):405-420. doi: 10.1007/s00359-022-01546-1. Epub 2022 Mar 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验