Department of Zoology, Maharshi Dayanand University, Rohtak, Haryana, India.
Department of Environment Science, Maharshi Dayanand University, Rohtak (Haryana), India.
Environ Res. 2023 Jul 15;229:116025. doi: 10.1016/j.envres.2023.116025. Epub 2023 Apr 29.
The goal of the project was to create environmentally friendly and economically viable materials for thoroughly purifying contaminated water. An affordable, phytogenic, and multifunctional plant-based nanomaterial was prepared in this context. The work demonstrates an effective green synthesis method for producing iron nanoparticles (FeNPs) using six different plant extracts as a reducing agent. The characterization of green synthesized catalysts was concluded via Spectroscopy (tauc plot), XRD, FE-SEM, and FT-IR. The produced nanomaterial, which had an X-ray diffractogram (XRD) peak at 43.33⁰ and a size range of 1.82-63.63 nm, functioned as a highly effective nano-photocatalyst for the degradation of cationic dye. Due to the presence of a lower overall secondary metabolites quota, Ocimum sanctum plant extract reduced iron precursor produced the highest yield of dried NPs, followed by Azadirachta indica, Prosopis cineraria, Syzygium cumini, Citrus limon, and Salvadora oleoides. Further, the synthesized catalyst was tested for its effectiveness against gentian violet dye degradation. Ocimum sanctum plant extract reduced iron precursor produced the highest yield of dried NPs, followed by Azadirachta indica, Prosopis cineraria, Syzygium cumini, Citrus limon, and Salvadora oleoides, in that order. The dye removal efficiency of nanoparticles was 51% (Azadirachta indica), 83% (Ocimum sanctum), 59% (Syzygium cumini), 40% (Salvadora oleoides), 59% (Prosopis cineraria), and 63% (Citrus limon) after 12 h of visible light irradiation. The key factor in the process of deterioration is •O. As a result, the nanoparticles can be used in antibacterial and photocatalytic processes. The reduced band gap was responsible for the increased photocatalytic quantity. The maximum adsorption capacity at the time of equilibrium was obtained in order as Ocimum sanctum > Citrus limon > Prosopis cineraria > Syzygium cumini > Azadirachta indica > Salvadora oleoides. The simplicity of production, low cost, magnetic property, and high adsorption capacity will increase the efficacy of the water treatment method. This article reports on the creation of unique iron nanoparticles and their use in the purification of water.
该项目的目标是为彻底净化受污染的水创造环保且经济可行的材料。在这种情况下,制备了一种负担得起的、植物源性的、多功能的基于植物的纳米材料。该工作展示了一种使用六种不同植物提取物作为还原剂有效合成铁纳米粒子 (FeNP) 的绿色合成方法。通过光谱(tau 图)、XRD、FE-SEM 和 FT-IR 对绿色合成催化剂的特性进行了总结。所制备的纳米材料在 X 射线衍射图(XRD)中具有 43.33°的峰值,尺寸范围为 1.82-63.63nm,可用作高效的纳米光催化剂,用于降解阳离子染料。由于存在较低的总次生代谢物配额,圣罗勒植物提取物还原铁前体产生了最高产率的干燥 NPs,其次是印楝、银合欢、蒲桃、柠檬和榄香烯。此外,还测试了合成催化剂对龙胆紫染料降解的有效性。圣罗勒植物提取物还原铁前体产生了最高产率的干燥 NPs,其次是印楝、银合欢、蒲桃、柠檬和榄香烯,顺序为印楝、圣罗勒、蒲桃、榄香烯、银合欢和柠檬。在可见光照射 12 小时后,纳米粒子对染料的去除效率分别为 51%(印楝)、83%(圣罗勒)、59%(蒲桃)、40%(榄香烯)、59%(银合欢)和 63%(柠檬)。恶化过程中的关键因素是 •O。因此,纳米粒子可用于抗菌和光催化过程。还原的带隙负责增加光催化量。为了获得平衡时的最大吸附容量,其顺序为圣罗勒>柠檬>银合欢>蒲桃>印楝>榄香烯。生产的简单性、低成本、磁性和高吸附容量将提高水处理方法的功效。本文报道了独特的铁纳米粒子的制备及其在水净化中的应用。