Suppr超能文献

疑似心肌梗死的个性化诊断。

Personalized diagnosis in suspected myocardial infarction.

机构信息

Department of Cardiology, University Heart and Vascular Center, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany.

German Center for Cardiovascular Research (DZHK), Partner SiteHamburg/Kiel/Lübeck, Hamburg, Germany.

出版信息

Clin Res Cardiol. 2023 Sep;112(9):1288-1301. doi: 10.1007/s00392-023-02206-3. Epub 2023 May 2.

Abstract

BACKGROUND

In suspected myocardial infarction (MI), guidelines recommend using high-sensitivity cardiac troponin (hs-cTn)-based approaches. These require fixed assay-specific thresholds and timepoints, without directly integrating clinical information. Using machine-learning techniques including hs-cTn and clinical routine variables, we aimed to build a digital tool to directly estimate the individual probability of MI, allowing for numerous hs-cTn assays.

METHODS

In 2,575 patients presenting to the emergency department with suspected MI, two ensembles of machine-learning models using single or serial concentrations of six different hs-cTn assays were derived to estimate the individual MI probability (ARTEMIS model). Discriminative performance of the models was assessed using area under the receiver operating characteristic curve (AUC) and logLoss. Model performance was validated in an external cohort with 1688 patients and tested for global generalizability in 13 international cohorts with 23,411 patients.

RESULTS

Eleven routinely available variables including age, sex, cardiovascular risk factors, electrocardiography, and hs-cTn were included in the ARTEMIS models. In the validation and generalization cohorts, excellent discriminative performance was confirmed, superior to hs-cTn only. For the serial hs-cTn measurement model, AUC ranged from 0.92 to 0.98. Good calibration was observed. Using a single hs-cTn measurement, the ARTEMIS model allowed direct rule-out of MI with very high and similar safety but up to tripled efficiency compared to the guideline-recommended strategy.

CONCLUSION

We developed and validated diagnostic models to accurately estimate the individual probability of MI, which allow for variable hs-cTn use and flexible timing of resampling. Their digital application may provide rapid, safe and efficient personalized patient care.

TRIAL REGISTRATION NUMBERS

Data of following cohorts were used for this project: BACC ( www.

CLINICALTRIALS

gov ; NCT02355457), stenoCardia ( www.

CLINICALTRIALS

gov ; NCT03227159), ADAPT-BSN ( www.australianclinicaltrials.gov.au ; ACTRN12611001069943), IMPACT ( www.australianclinicaltrials.gov.au , ACTRN12611000206921), ADAPT-RCT ( www.anzctr.org.au ; ANZCTR12610000766011), EDACS-RCT ( www.anzctr.org.au ; ANZCTR12613000745741); DROP-ACS ( https://www.umin.ac.jp , UMIN000030668); High-STEACS ( www.

CLINICALTRIALS

gov ; NCT01852123), LUND ( www.

CLINICALTRIALS

gov ; NCT05484544), RAPID-CPU ( www.

CLINICALTRIALS

gov ; NCT03111862), ROMI ( www.

CLINICALTRIALS

gov ; NCT01994577), SAMIE ( https://anzctr.org.au ; ACTRN12621000053820), SEIGE and SAFETY ( www.

CLINICALTRIALS

gov ; NCT04772157), STOP-CP ( www.

CLINICALTRIALS

gov ; NCT02984436), UTROPIA ( www.

CLINICALTRIALS

gov ; NCT02060760).

摘要

背景

在疑似心肌梗死(MI)中,指南推荐使用高敏心肌肌钙蛋白(hs-cTn)为基础的方法。这些方法需要固定的特定于检测的阈值和时间点,而不直接整合临床信息。我们使用机器学习技术,包括 hs-cTn 和临床常规变量,旨在建立一个直接估计个体 MI 概率的数字工具,允许使用多种 hs-cTn 检测方法。

方法

在 2575 名因疑似 MI 而就诊急诊的患者中,我们使用两种基于机器学习的模型集合,分别使用六种不同 hs-cTn 检测方法的单次或连续浓度来估计个体 MI 概率(ARTEMIS 模型)。使用接受者操作特征曲线下的面积(AUC)和对数损失来评估模型的判别性能。在一个包含 1688 名患者的外部队列中验证模型的性能,并在包含 23411 名患者的 13 个国际队列中测试其全球通用性。

结果

包括年龄、性别、心血管危险因素、心电图和 hs-cTn 在内的 11 个常规变量被纳入 ARTEMIS 模型。在验证和推广队列中,确认了出色的判别性能,优于仅使用 hs-cTn。对于连续 hs-cTn 测量模型,AUC 范围从 0.92 到 0.98。观察到良好的校准。使用单次 hs-cTn 测量,ARTEMIS 模型可以非常高且相似的安全性直接排除 MI,但与指南推荐的策略相比,效率提高了 2 至 3 倍。

结论

我们开发并验证了用于准确估计个体 MI 概率的诊断模型,这些模型允许使用可变的 hs-cTn 和灵活的重采样时间。它们的数字化应用可能提供快速、安全和有效的个性化患者护理。

临床试验注册

以下队列的数据用于本项目:BACC(www.clinicaltrials.gov;NCT02355457)、stenoCardia(www.clinicaltrials.gov;NCT03227159)、ADAPT-BSN(www.australianclinicaltrials.gov.au;ACTRN12611001069943)、IMPACT(www.australianclinicaltrials.gov.au;ACTRN12611000206921)、ADAPT-RCT(www.anzctr.org.au;ANZCTR12610000766011)、EDACS-RCT(www.anzctr.org.au;ANZCTR12613000745741);DROP-ACS(https://www.umin.ac.jp,UMIN000030668);High-STEACS(www.clinicaltrials.gov;NCT01852123)、LUND(www.clinicaltrials.gov;NCT05484544)、RAPID-CPU(www.clinicaltrials.gov;NCT03111862)、ROMI(www.clinicaltrials.gov;NCT01994577)、SAMIE(https://anzctr.org.au;ACTRN12621000053820)、SEIGE 和 SAFETY(www.clinicaltrials.gov;NCT04772157)、STOP-CP(www.clinicaltrials.gov;NCT02984436)、UTROPIA(www.clinicaltrials.gov;NCT02060760)。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aa41/10449973/f67a72f3931a/392_2023_2206_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验