Suppr超能文献

通过优化自然图像选择和合成图像生成来调节人类大脑反应。

Modulating human brain responses via optimal natural image selection and synthetic image generation.

作者信息

Gu Zijin, Jamison Keith, Sabuncu Mert R, Kuceyeski Amy

机构信息

School of Electrical and Computer Engineering, Cornell University and Cornell Tech, New York, NY, USA.

Department of Radiology, Weill Cornell Medicine, New York, New York, USA.

出版信息

ArXiv. 2023 Apr 18:arXiv:2304.09225v1.

Abstract

One of the main goals of neuroscience is to understand how biological brains interpret and process incoming environmental information. Building computational encoding models that map images to neural responses is one way to pursue this goal. Moreover, generating or selecting visual stimuli designed to achieve specific patterns of responses allows exploration and control of neuronal firing rates or regional brain activity responses. Here, we investigated the brain's regional activation selectivity and inter-individual differences in human brain responses to various sets of natural and synthetic (generated) images via two functional MRI (fMRI) studies. For our first fMRI study, we used a pre-trained group-level neural model for selecting or synthesizing images that are predicted to maximally activate targeted brain regions. We then presented these images to subjects while collecting their fMRI data. Our results show that optimized images indeed evoke larger magnitude responses than other images predicted to achieve average levels of activation.Furthermore, the activation gain is positively associated with the encoding model accuracy. While most regions' activations in response to maximal natural images and maximal synthetic images were not different, two regions, namely anterior temporal lobe faces (aTLfaces) and fusiform body area 1 (FBA1), had significantly higher activation in response to maximal synthetic images compared to maximal natural images. On the other hand, three regions; medial temporal lobe face area (mTLfaces), ventral word form area 1 (VWFA1) and ventral word form area 2 (VWFA2), had higher activation in response to maximal natural images compared to maximal synthetic images. In our second fMRI experiment, we focused on probing inter-individual differences in face regions' responses and found that individual-specific synthetic (and not natural) images derived using a personalized encoding model elicited significantly higher responses compared to synthetic images derived from the group-level or other subjects' encoding models. Finally, we replicated the finding showing synthetic images elicited larger activation responses in the aTLfaces region compared to natural image responses in that region. Here, for the first time, we leverage our data-driven and generative modeling framework NeuroGen to probe inter-individual differences in and functional specialization of the human visual system. Our results indicate that NeuroGen can be used to modulate macro-scale brain regions in specific individuals using synthetically generated visual stimuli.

摘要

神经科学的主要目标之一是了解生物大脑如何解释和处理传入的环境信息。构建将图像映射到神经反应的计算编码模型是实现这一目标的一种方法。此外,生成或选择旨在实现特定反应模式的视觉刺激,可以探索和控制神经元放电率或大脑区域活动反应。在此,我们通过两项功能磁共振成像(fMRI)研究,调查了人类大脑对各种自然和合成(生成)图像集反应中的区域激活选择性和个体差异。在我们的第一项fMRI研究中,我们使用了一个预训练的组水平神经模型来选择或合成预计能最大程度激活目标脑区的图像。然后,我们将这些图像呈现给受试者,同时收集他们的fMRI数据。我们的结果表明,优化后的图像确实比其他预计能达到平均激活水平的图像引发了更大幅度的反应。此外,激活增益与编码模型的准确性呈正相关。虽然大多数区域对最大自然图像和最大合成图像的激活没有差异,但有两个区域,即颞叶前部面孔区(aTLfaces)和梭状身体区域1(FBA1),与最大自然图像相比,对最大合成图像的激活明显更高。另一方面,有三个区域;颞叶内侧面孔区(mTLfaces)、腹侧词形区1(VWFA1)和腹侧词形区2(VWFA2),与最大合成图像相比,对最大自然图像的激活更高。在我们的第二项fMRI实验中,我们专注于探究面孔区域反应的个体差异,发现使用个性化编码模型生成的个体特异性合成(而非自然)图像,与从组水平或其他受试者编码模型派生的合成图像相比,引发的反应明显更高。最后,我们重复了这一发现,即与该区域的自然图像反应相比,合成图像在aTLfaces区域引发了更大的激活反应。在此,我们首次利用我们的数据驱动和生成建模框架NeuroGen来探究人类视觉系统的个体差异和功能特化。我们的结果表明,NeuroGen可用于使用合成生成的视觉刺激来调节特定个体的宏观脑区。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/08c1/10153296/eef77dd2bfd5/nihpp-2304.09225v1-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验