Suppr超能文献

利用 Sentinel-2 影像得出的经验模型监测尾矿坝溃坝后的河流浊度。

Monitoring river turbidity after a mine tailing dam failure using an empirical model derived from Sentinel-2 imagery.

机构信息

Universidade Estadual de São Paulo (UNESP), Laboratório de Estudos de Bacias (LEBAC), Avenida 24A, 1515, Bela Vista, 16506-900 Rio Claro, SP, Brazil.

Universidade Estadual de São Paulo (UNESP), Centro de Estudos Ambientais, Avenida 24A, 1515, Bela Vista, 16506-900 Rio Claro, SP, Brazil.

出版信息

An Acad Bras Cienc. 2023 May 1;95(1):e20220177. doi: 10.1590/0001-3765202320220177. eCollection 2023.

Abstract

Sudden failure of a mine tailing dam occurred in the municipality of Brumadinho, Minas Gerais, Brazil, on January 25, 2019. Approximately 12 million cubic meters of mine tailings discharged into the Paraopeba River, producing strong environmental and societal impacts, mainly due to a massive increase in turbidity (occasionally exceeding 50,000 Nephelometric Turbidity Units [NTU] (CPRM 2019). Remote sensing is a well-established tool for quantifying spatial patterns of turbidity. However, a few empirical models have been developed to map turbidity in rivers impacted by mine tailings. Thus, this study aimed to develop an empirical model capable of producing turbidity estimates based on images from the Sentinel-2 satellite, using the Paraopeba River as the study area. We found that river turbidity was most strongly correlated with the sensor's near-infrared band (NIR) (band 8). Thus, we built an empirical single-band model using an exponential function with an (R2 of 0.91) to characterize the spatial-temporal variation of turbidity based on satellite observations of NIR reflectance. Although the role of discharged tailings in the seasonal variation of turbidity is not well understood, the proposed model enabled the monitoring of turbidity variations in the Paraopeba River associated with seasonal resuspension or deposition of mine tailings. Our study shows the capability of single-band models to quantify seasonal variations in turbidity in rivers impacted by mine tailing pollution.

摘要

2019 年 1 月 25 日,巴西米纳斯吉拉斯州布鲁马迪尼奥市的一座尾矿坝突然决堤。约 1200 万立方米的尾矿排入帕拉奥佩巴河,造成了强烈的环境和社会影响,主要是由于浊度大幅增加(偶尔超过 50000 浊度单位 [NTU](CPRM 2019))。遥感是量化浊度空间分布的成熟工具。然而,已经开发了一些经验模型来绘制受尾矿影响的河流的浊度图。因此,本研究旨在开发一种经验模型,能够根据 Sentinel-2 卫星的图像生成浊度估计值,以帕拉奥佩巴河为研究区域。我们发现,河流浊度与传感器的近红外波段(NIR)(波段 8)最密切相关。因此,我们使用指数函数构建了一个经验单波段模型(R2 为 0.91),以根据 NIR 反射率的卫星观测来描述浊度的时空变化。尽管尾矿排放对浊度季节性变化的作用尚不清楚,但所提出的模型能够监测与尾矿季节性再悬浮或沉积相关的帕拉奥佩巴河浊度变化。我们的研究表明,单波段模型能够量化受尾矿污染影响的河流的浊度季节性变化。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验