J Opt Soc Am A Opt Image Sci Vis. 2023 Apr 1;40(4):703-713. doi: 10.1364/JOSAA.484217.
"Wavelength selectivity" is an important intrinsic property of diffractive optical elements that offers significant application potential. Here, we focus on tailored wavelength selectivity, the controlled efficiency distribution into different specific diffraction orders for selected wavelengths or wavelength ranges from UV to IR using interlaced double-layer single-relief blazed gratings composed of two materials. Dispersion characteristics of inorganic glasses, layer materials, polymers, nanocomposites, and high-index liquids are taken into account to investigate the impact of especially intersecting or partially overlapping dispersion curves on diffraction efficiency in different orders, providing a guideline for material choice depending on the required optical performance. By selecting appropriate combinations of materials and adjusting the grating depth, a wide variety of small or large wavelength ranges can be assigned to different diffraction orders with high efficiency that can be beneficially applied to wavelength selective functions in optical systems also including imaging or broadband lighting applications.
“波长选择性”是衍射光学元件的一个重要固有特性,具有重要的应用潜力。在这里,我们关注的是定制波长选择性,即使用由两种材料组成的交错双层单浮雕闪耀光栅,将特定波长或波长范围(从 UV 到 IR)的效率选择性地分配到不同的特定衍射级。我们考虑了无机玻璃、层材料、聚合物、纳米复合材料和高折射率液体的色散特性,以研究特别是相交或部分重叠的色散曲线对不同阶次衍射效率的影响,为根据所需的光学性能选择材料提供了指导。通过选择合适的材料组合并调整光栅深度,可以将各种小或大的波长范围分配到不同的衍射级,以获得高效率,这可有益地应用于光学系统中的波长选择功能,包括成像或宽带照明应用。