Suppr超能文献

基于改进沙蚕群算法的进化极限学习机水下图像光照估计。

Underwater image illumination estimation via an evolving extreme learning machine by an improved salp swarm algorithm.

出版信息

J Opt Soc Am A Opt Image Sci Vis. 2023 Mar 1;40(3):560-572. doi: 10.1364/JOSAA.471594.

Abstract

Underwater images have chromatic aberrations under different light sources and complex underwater scenes, which can lead to the wrong choice when using an underwater robot. To solve this problem, this paper proposes an underwater image illumination estimation model, which we call the modified salp swarm algorithm (SSA) extreme learning machine (MSSA-ELM). It uses the Harris hawks optimization algorithm to generate a high-quality SSA population, and uses a multiverse optimizer algorithm to improve the follower position that makes an individual salp carry out global and local searches with a different scope. Then, the improved SSA is used to iteratively optimize the input weights and hidden layer bias of ELM to form a stable MSSA-ELM illumination estimation model. The experimental results of our underwater image illumination estimations and predictions show that the average accuracy of the MSSA-ELM model is 0.9209. Compared to similar models, the MSSA-ELM model has the best accuracy for underwater image illumination estimation. The analysis results show that the MSSA-ELM model also has high stability and is significantly different from other models.

摘要

水下图像在不同光源和复杂水下场景下存在色差,这可能导致水下机器人在使用时出现错误的选择。为了解决这个问题,本文提出了一种水下图像光照估计模型,我们称之为改进沙鱼群算法(SSA)极限学习机(MSSA-ELM)。它使用哈里斯鹰优化算法生成高质量的 SSA 种群,并使用多元宇宙优化算法来改进跟随者的位置,使个体沙鱼进行不同范围的全局和局部搜索。然后,改进的 SSA 用于迭代优化 ELM 的输入权重和隐藏层偏差,以形成稳定的 MSSA-ELM 光照估计模型。我们对水下图像光照估计和预测的实验结果表明,MSSA-ELM 模型的平均准确率为 0.9209。与类似模型相比,MSSA-ELM 模型对水下图像光照估计具有最佳的准确性。分析结果表明,MSSA-ELM 模型还具有很高的稳定性,与其他模型有显著的不同。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验