Suppr超能文献

生物质分析热解过程中样品质量(缩放效应)对非石墨化碳(生物炭)合成及结构的影响。

The influence of sample mass (scaling effect) on the synthesis and structure of non-graphitizing carbon (biochar) during the analytical pyrolysis of biomass.

作者信息

Nair Rahul Ramesh, Kißling Patrick A, Schaate Andreas, Marchanka Alexander, Shamsuyeva Madina, Behrens Peter, Weichgrebe Dirk

机构信息

Institute of Sanitary Engineering and Waste Management (ISAH), Leibniz University of Hannover Hannover 30167 Germany

Institute of Physical Chemistry and Electrochemistry (PCI), Leibniz University of Hannover Hannover 30167 Germany.

出版信息

RSC Adv. 2023 May 2;13(20):13526-13539. doi: 10.1039/d3ra01911j.

Abstract

The porous non-graphitizing carbon (NGC) known as biochar is derived from the pyrolytic conversion of organic precursors and is widely investigated due to its multifunctional applications. At present, biochar is predominantly synthesized in custom lab-scale reactors (LSRs) to determine the properties of carbon, while a thermogravimetric reactor (TG) is utilized for pyrolysis characterization. This results in inconsistencies in the correlation between the structure of biochar carbon and the pyrolysis process. If a TG reactor can also be used as an LSR for biochar synthesis, then the process characteristics and the properties of the synthesized NGC can be simultaneously investigated. It also eliminates the need for expensive LSRs in the laboratory, improves the reproducibility, and correlatability of pyrolysis characteristics with the properties of the resulting biochar carbon. Furthermore, despite numerous TG studies on the kinetics and characterization of biomass pyrolysis, none have questioned how the properties of biochar carbon vary due to the influence of the starting sample mass (scaling) in the reactor. Herein, with a lignin-rich model substrate (walnut shells), TG is utilized as an LSR, for the first time, to investigate the scaling effect starting from the pure kinetic regime (KR). The changes in the pyrolysis characteristics and the structural properties of the resultant NGC with scaling are concurrently traced and comprehensively studied. It is conclusively proven that scaling influences the pyrolysis process and the NGC structure. There is a gradual shift in pyrolysis characteristics and NGC properties from the KR until an inflection mass of ∼200 mg is reached. After this, the carbon properties (aryl-C%, pore characteristics, defects in nanostructure, and biochar yield) are similar. At small scales (≲100 mg), and especially near the KR (≤10 mg) carbonization is higher despite the reduced char formation reaction. The pyrolysis is more endothermic near KR with increased emissions of CO and HO. For a lignin-rich precursor, at masses above inflection point, TG can be employed for concurrent pyrolysis characterization and biochar synthesis for application-specific NGC investigations.

摘要

被称为生物炭的多孔非石墨化碳(NGC)源自有机前驱体的热解转化,因其多功能应用而受到广泛研究。目前,生物炭主要在定制的实验室规模反应器(LSR)中合成,以确定碳的性质,而热重反应器(TG)则用于热解表征。这导致生物炭碳结构与热解过程之间的相关性不一致。如果TG反应器也可以用作生物炭合成的LSR,那么就可以同时研究合成过程的特性和所得NGC的性质。这也消除了实验室中对昂贵LSR的需求,提高了热解特性与所得生物炭碳性质之间的可重复性和相关性。此外,尽管有许多关于生物质热解动力学和表征的TG研究,但没有人质疑生物炭碳的性质如何因反应器中起始样品质量(规模)的影响而变化。在此,以富含木质素的模型底物(核桃壳)为例,首次将TG用作LSR,从纯动力学区域(KR)开始研究规模效应。同时追踪并全面研究了随着规模变化,所得NGC的热解特性和结构性质的变化。最终证明规模会影响热解过程和NGC结构。从KR开始,热解特性和NGC性质会逐渐发生变化,直到达到约200 mg的拐点质量。在此之后,碳性质(芳基-C%、孔隙特征、纳米结构缺陷和生物炭产率)相似。在小规模(≲100 mg)下,尤其是在接近KR(≤10 mg)时,尽管炭形成反应减少,但碳化程度更高。在KR附近,热解更吸热,同时CO和HO的排放量增加。对于富含木质素的前驱体,在质量高于拐点时,TG可用于同时进行热解表征和生物炭合成,以进行特定应用的NGC研究。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bcb6/10153483/07f5d5ba8c3c/d3ra01911j-f1.jpg

相似文献

2
Machine learning prediction of biochar yield and carbon contents in biochar based on biomass characteristics and pyrolysis conditions.
Bioresour Technol. 2019 Sep;288:121527. doi: 10.1016/j.biortech.2019.121527. Epub 2019 May 22.
3
Slow pyrolysis polygeneration of bamboo (Phyllostachys pubescens): Product yield prediction and biochar formation mechanism.
Bioresour Technol. 2018 Sep;263:444-449. doi: 10.1016/j.biortech.2018.05.040. Epub 2018 May 11.
5
Influence of biomass components, temperature and pressure on the pyrolysis behavior and biochar properties of pine nut shells.
Bioresour Technol. 2020 Oct;313:123682. doi: 10.1016/j.biortech.2020.123682. Epub 2020 Jun 17.
6
A critical review of the production and advanced utilization of biochar via selective pyrolysis of lignocellulosic biomass.
Bioresour Technol. 2020 Sep;312:123614. doi: 10.1016/j.biortech.2020.123614. Epub 2020 Jun 2.
8
Trace metal elements mediated co-pyrolysis of biomass and bentonite for the synthesis of biochar with high stability.
Sci Total Environ. 2021 Jun 20;774:145611. doi: 10.1016/j.scitotenv.2021.145611. Epub 2021 Feb 9.
9
Reduction of Bromate by Cobalt-Impregnated Biochar Fabricated via Pyrolysis of Lignin Using CO as a Reaction Medium.
ACS Appl Mater Interfaces. 2017 Apr 19;9(15):13142-13150. doi: 10.1021/acsami.7b00619. Epub 2017 Apr 10.

本文引用的文献

2
Capacitive behavior of activated carbons obtained from coffee husk.
RSC Adv. 2020 Oct 15;10(62):38097-38106. doi: 10.1039/d0ra06206e. eCollection 2020 Oct 12.
3
An overview on engineering the surface area and porosity of biochar.
Sci Total Environ. 2021 Apr 1;763:144204. doi: 10.1016/j.scitotenv.2020.144204. Epub 2020 Dec 25.
4
Estimating the organic oxygen content of biochar.
Sci Rep. 2020 Aug 4;10(1):13082. doi: 10.1038/s41598-020-69798-y.
5
Caffeine removal by Gliricidia sepium biochar: Influence of pyrolysis temperature and physicochemical properties.
Environ Res. 2020 Oct;189:109865. doi: 10.1016/j.envres.2020.109865. Epub 2020 Jul 5.
6
Preparation of biochar from food waste digestate: Pyrolysis behavior and product properties.
Bioresour Technol. 2020 Apr;302:122841. doi: 10.1016/j.biortech.2020.122841. Epub 2020 Jan 22.
8
Dissolved organic matter characterization of biochars produced from different feedstock materials.
J Environ Manage. 2019 Mar 1;233:393-399. doi: 10.1016/j.jenvman.2018.12.069. Epub 2018 Dec 24.
9
Biochar stability assessment methods: A review.
Sci Total Environ. 2019 Jan 10;647:210-222. doi: 10.1016/j.scitotenv.2018.07.402. Epub 2018 Jul 30.
10
Graphitizing Non-graphitizable Carbons by Stress-induced Routes.
Sci Rep. 2017 Nov 29;7(1):16551. doi: 10.1038/s41598-017-16424-z.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验