Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States.
Department of Materials Science and Engineering, University of Tennessee, Knoxville, Tennessee 37996, United States.
ACS Nano. 2023 May 23;17(10):9647-9657. doi: 10.1021/acsnano.3c03363. Epub 2023 May 8.
Underlying the rapidly increasing photovoltaic efficiency and stability of metal halide perovskites (MHPs) is the advancement in the understanding of the microstructure of polycrystalline MHP thin film. Over the past decade, intense efforts have been aimed at understanding the effect of microstructures on MHP properties, including chemical heterogeneity, strain disorder, phase impurity, etc. It has been found that grain and grain boundary (GB) are tightly related to lots of microscale and nanoscale behavior in MHP thin films. Atomic force microscopy (AFM) is widely used to observe grain and boundary structures in topography and subsequently to study the correlative surface potential and conductivity of these structures. For now, most AFM measurements have been performed in imaging mode to study the static behavior; in contrast, AFM spectroscopy mode allows us to investigate the dynamic behavior of materials, e.g., conductivity under sweeping voltage. However, a major limitation of AFM spectroscopy measurements is that they require manual operation by human operators, and as such only limited data can be obtained, hindering systematic investigations of these microstructures. In this work, we designed a workflow combining the conductive AFM measurement with a machine learning (ML) algorithm to systematically investigate grain boundaries in MHPs. The trained ML model can extract GBs locations from the topography image, and the workflow drives the AFM probe to each GB location to perform a current-voltage (IV) curve automatically. Then, we are able to have IV curves at all GB locations, allowing us to systematically understand the property of GBs. Using this method, we discovered that the GB junction points are less conductive, potentially more photoactive, and can play critical roles in MHP stability, while most previous works only focused on the difference between GB and grains.
在金属卤化物钙钛矿(MHP)的光伏效率和稳定性迅速提高的背后,是对多晶 MHP 薄膜微结构理解的进步。在过去的十年中,人们致力于理解微结构对 MHP 性能的影响,包括化学不均匀性、应变无序、相杂质等。研究发现,晶粒和晶界(GB)与 MHP 薄膜中的许多微观和纳米尺度行为密切相关。原子力显微镜(AFM)广泛用于观察晶粒和边界结构的形貌,并随后研究这些结构的相关表面电势和导电性。到目前为止,大多数 AFM 测量都是在成像模式下进行的,以研究静态行为;相比之下,AFM 光谱模式允许我们研究材料的动态行为,例如在扫电压下的导电性。然而,AFM 光谱测量的一个主要限制是它们需要由操作人员手动操作,因此只能获得有限的数据,这阻碍了对这些微观结构的系统研究。在这项工作中,我们设计了一个结合导电 AFM 测量和机器学习(ML)算法的工作流程,以系统地研究 MHP 中的晶界。经过训练的 ML 模型可以从形貌图像中提取 GB 位置,工作流程驱动 AFM 探针自动到达每个 GB 位置以执行电流-电压(IV)曲线。然后,我们可以在所有 GB 位置获得 IV 曲线,使我们能够系统地了解 GB 的特性。使用这种方法,我们发现 GB 结点位点的导电性较低,潜在的光电活性更强,并且在 MHP 稳定性方面起着关键作用,而大多数先前的工作仅集中在 GB 和晶粒之间的差异上。