Opt Express. 2023 Mar 13;31(6):10905-10917. doi: 10.1364/OE.484078.
Achromatic bifunctional metasurface is of great significance in optical path miniaturization among advanced integrated optical systems. However, the reported achromatic metalenses mostly utilize a phase compensate scheme, which uses geometric phase to realize the functionality and uses transmission phase to compensate the chromatic aberration. In the phase compensation scheme, all the modulation freedoms of a nanofin are driven at the same time. This makes most of the broadband achromatic metalenses restricted to realizing single function. Also, the phase compensate scheme is always addressed with circularly polarized (CP) incidence, leading to a limitation in efficiency and optical path miniaturization. Moreover, for a bifunctional or multifunctional achromatic metalens, not all the nanofins will work at the same time. Owing to this, achromatic metalenses using a phase compensate scheme are usually of low focusing efficiencies. To this end, based on the pure transmission phase in the x-/y- axis provided by the birefringent nanofins structure, we proposed an all-dielectric polarization-modulated broadband achromatic bifunctional metalens (BABM) in the visible light. Applying two independent phases on one metalens at the same time, the proposed BABM realizes achromatism in a bifunctional metasurface. Releasing the freedom of nanofin's angular orientation, the proposed BABM breaks the dependence on CP incidence. As an achromatic bifunctional metalens, all the nanofins on the proposed BABM can work at the same time. Simulation results show that the designed BABM is capable of achromatically focusing the incident beam to a single focal spot and an optical vortex (OV) under the illumination of x- and y-polarization, respectively. In the designed waveband 500 nm (green) to 630 nm (red), the focal planes stay unchanged at the sampled wavelengths. Simulation results prove that the proposed metalens not only realized bifunctional achromatically, but also breaks the dependence of CP incidence. The proposed metalens has a numerical aperture of 0.34 and efficiencies of 33.6% and 34.6%. The proposed metalens has advantages of being flexible, single layer, convenient in manufacturing, and optical path miniaturization friendly, and will open a new page in advanced integrated optical systems.
消色差双功能超表面在先进集成光学系统中的光路小型化方面具有重要意义。然而,已报道的消色差金属透镜大多采用相位补偿方案,该方案利用几何相位实现功能,并利用透射相位补偿色差。在相位补偿方案中,纳米鳍的所有调制自由度同时被驱动。这使得大多数宽带消色差金属透镜仅限于实现单一功能。此外,相位补偿方案总是针对圆偏振(CP)入射进行处理,这导致效率和光路小型化受到限制。此外,对于双功能或多功能消色差金属透镜,并非所有纳米鳍都同时工作。由于这个原因,使用相位补偿方案的消色差金属透镜通常聚焦效率较低。为此,基于双折射纳米鳍结构提供的 x-/y-轴纯透射相位,我们在可见光波段提出了一种全介质偏振调制宽带消色差双功能金属透镜(BABM)。同时在一个金属透镜上施加两个独立的相位,所提出的 BABM 在双功能超表面中实现消色差。通过释放纳米鳍角度取向的自由度,所提出的 BABM 打破了对 CP 入射的依赖。作为消色差双功能金属透镜,所提出的 BABM 中的所有纳米鳍都可以同时工作。模拟结果表明,所设计的 BABM 能够在 x-和 y-偏振照明下分别将入射光束消色差聚焦到单个焦点和光学涡旋(OV)。在所设计的波段 500nm(绿色)到 630nm(红色)内,焦点在采样波长处保持不变。模拟结果证明,所提出的金属透镜不仅实现了双功能消色差,而且打破了 CP 入射的依赖。该金属透镜的数值孔径为 0.34,效率分别为 33.6%和 34.6%。所提出的金属透镜具有灵活、单层、易于制造和光路小型化友好的优点,将在先进集成光学系统中开辟新的篇章。