Suppr超能文献

Logistic 源和折线控制策略下人类流感系统的滑动动力学和分岔。

Sliding dynamics and bifurcations of a human influenza system under logistic source and broken line control strategy.

机构信息

Department of System Science and Applied Mathematics, Kunming University of Science and Technology, Kunming, Yunnan 650500, China.

Key Laboratory of Applied Statistics and Data Analysis of Department of Education of Yunnan Province, Kunming, Yunnan 650500, China.

出版信息

Math Biosci Eng. 2023 Feb 6;20(4):6800-6837. doi: 10.3934/mbe.2023293.

Abstract

This paper proposes a non-smooth human influenza model with logistic source to describe the impact on media coverage and quarantine of susceptible populations of the human influenza transmission process. First, we choose two thresholds $ I_{T} $ and $ S_{T} $ as a broken line control strategy: Once the number of infected people exceeds $ I_{T} $, the media influence comes into play, and when the number of susceptible individuals is greater than $ S_{T} $, the control by quarantine of susceptible individuals is open. Furthermore, by choosing different thresholds $ I_{T} $ and $ S_{T} $ and using Filippov theory, we study the dynamic behavior of the Filippov model with respect to all possible equilibria. It is shown that the Filippov system tends to the pseudo-equilibrium on sliding mode domain or one endemic equilibrium or bistability endemic equilibria under some conditions. The regular/virtulal equilibrium bifurcations are also given. Lastly, numerical simulation results show that choosing appropriate threshold values can prevent the outbreak of influenza, which implies media coverage and quarantine of susceptible individuals can effectively restrain the transmission of influenza. The non-smooth system with logistic source can provide some new insights for the prevention and control of human influenza.

摘要

本文提出了一个具有 logistic 源的非光滑人类流感模型,用于描述人类流感传播过程对易感人群的媒体报道和隔离的影响。首先,我们选择两个阈值 $ I_{T} $ 和 $ S_{T} $ 作为折线控制策略:一旦感染人数超过 $ I_{T} $,媒体的影响就会发挥作用,而当易感个体数量大于 $ S_{T} $ 时,就会对易感个体进行隔离控制。此外,通过选择不同的阈值 $ I_{T} $ 和 $ S_{T} $ 并使用 Filippov 理论,我们研究了 Filippov 模型在所有可能平衡点处的动力学行为。结果表明,在某些条件下,Filippov 系统倾向于在滑动模态域或一个地方性平衡点或双稳地方性平衡点上的伪平衡。还给出了正则/虚拟平衡点分岔。最后,数值模拟结果表明,选择适当的阈值可以防止流感的爆发,这意味着媒体报道和隔离易感个体可以有效地抑制流感的传播。具有 logistic 源的非光滑系统可以为人类流感的预防和控制提供一些新的见解。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验