Suppr超能文献

基于视觉的避碰集体运动的集体进化学习模型。

Collective evolution learning model for vision-based collective motion with collision avoidance.

机构信息

Department of Computer Science, Bar-Ilan University, Ramat-Gan, Israel.

Department of Cancer Biology, Cancer Institute, University College London, London, United Kingdom.

出版信息

PLoS One. 2023 May 10;18(5):e0270318. doi: 10.1371/journal.pone.0270318. eCollection 2023.

Abstract

Collective motion (CM) takes many forms in nature; schools of fish, flocks of birds, and swarms of locusts to name a few. Commonly, during CM the individuals of the group avoid collisions. These CM and collision avoidance (CA) behaviors are based on input from the environment such as smell, air pressure, and vision, all of which are processed by the individual and defined action. In this work, a novel vision-based CM with CA model (i.e., VCMCA) simulating the collective evolution learning process is proposed. In this setting, a learning agent obtains a visual signal about its environment, and throughout trial-and-error over multiple attempts, the individual learns to perform a local CM with CA which emerges into a global CM with CA dynamics. The proposed algorithm was evaluated in the case of locusts' swarms, showing the evolution of these behaviors in a swarm from the learning process of the individual in the swarm. Thus, this work proposes a biologically-inspired learning process to obtain multi-agent multi-objective dynamics.

摘要

集体运动(CM)在自然界中呈现出多种形式;例如鱼群、鸟群和蝗群等。通常,在 CM 中,群体中的个体可以避免碰撞。这些 CM 和碰撞避免(CA)行为是基于个体接收的环境输入,如气味、气压和视觉等,所有这些输入都由个体进行处理并定义动作。在这项工作中,提出了一种新颖的基于视觉的具有 CA 模型的 CM(即 VCMCA),用于模拟集体进化学习过程。在这种设置中,学习代理会获取关于其环境的视觉信号,并且通过多次尝试中的反复试验,个体学习执行具有 CA 的局部 CM,从而演变为具有 CA 动力学的全局 CM。该算法在蝗群的情况下进行了评估,展示了从群体中的个体学习过程中,群体中这些行为的演变。因此,这项工作提出了一种受生物启发的学习过程,以获得多主体多目标动态。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/854a/10171646/522e8a2f1608/pone.0270318.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验