Suppr超能文献

开发和验证用于预测肝癌患者生存和免疫状态的代谢模型。

Development and validation of metabolic models for predicting survival and immune status of hepatocellular carcinoma patients.

机构信息

Department of Gastroenterology, Ningbo First Hospital, Ningbo University, China.

Department of Gastrointestinal Surgery, Ningbo Medical Center Lihuili Hospital, Ningbo University, China.

出版信息

Adv Clin Exp Med. 2023 Dec;32(12):1423-1439. doi: 10.17219/acem/162819.

Abstract

BACKGROUND

Metabolic reprogramming is associated with the carcinogenesis of hepatocellular carcinoma (HCC). The effects of metabolism-related genes on predicting survival and immune status in HCC remain unclear.

OBJECTIVES

To develop and validate metabolic models for predicting the survival and immune status of HCC patients.

MATERIAL AND METHODS

The metabolic core genes for overall survival (OS) and disease-free survival (DFS) were retrieved. Then, glycolysis and fatty acid metabolism prognostic models were constructed and validated using The Cancer Genome Atlas (TCGA) and the International Cancer Genome Consortium (ICGC) data. Decision trees based on machine learning were developed for classifying the prognostic risks of HCC patients. The associations between the metabolic signatures, immunotherapy and immune cell infiltration were investigated. Experimental validations were performed using reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and immunohistochemistry (IHC).

RESULTS

We identified 30 prognostic core genes for glycolysis metabolism and 12 prognostic core genes for fatty acid metabolism. Subsequently, 2 glycolysis models and 2 fatty acid metabolism models were developed to predict the OS and DFS of HCC patients, respectively. Two decision trees were constructed to classify the low-, intermediateand high-risk groups of HCC patients for OS and DFS. Moreover, the patients in the high-risk groups of glycolysis and fatty acid metabolic models tended to have higher expression of programmed cell death ligand-1 (PD-L1 or CD274), programmed cell death 1 (PDCD1), cytotoxic T-lymphocyte-associated protein-4 (CTLA-4), and lymphocyte activating 3 (LAG3). Most of the metabolic core genes were significantly associated with immune cell infiltration. In addition, ATP-binding cassette subfamily B member 6 (ABCB6), peptidylprolyl isomerase A (PPIA), uroporphyrinogen decarboxylase (UROD), and non-SMC condensin II complex subunit H2 (NCAPH2) were positively correlated with both tumor mutational burden (TMB) and microsatellite instability (MSI) scores. The expression of ABCB6, PPIA, UROD, and NCAPH2 was validated using RT-qPCR and IHC.

CONCLUSIONS

We established novel prognostic models based on metabolism-related genes to better predict the outcome and immune status of HCC patients.

摘要

背景

代谢重编程与肝细胞癌(HCC)的癌变有关。代谢相关基因对预测 HCC 患者生存和免疫状态的影响尚不清楚。

目的

开发和验证代谢模型以预测 HCC 患者的生存和免疫状态。

材料和方法

检索与总生存期(OS)和无病生存期(DFS)相关的代谢核心基因。然后,使用癌症基因组图谱(TCGA)和国际癌症基因组联盟(ICGC)数据构建和验证糖酵解和脂肪酸代谢预后模型。基于机器学习的决策树用于对 HCC 患者的预后风险进行分类。研究了代谢特征与免疫治疗和免疫细胞浸润之间的关联。使用逆转录定量聚合酶链反应(RT-qPCR)和免疫组织化学(IHC)进行实验验证。

结果

我们确定了 30 个与糖酵解代谢相关的预后核心基因和 12 个与脂肪酸代谢相关的预后核心基因。随后,分别建立了 2 个糖酵解模型和 2 个脂肪酸代谢模型,以预测 HCC 患者的 OS 和 DFS。构建了 2 个决策树来对 HCC 患者的 OS 和 DFS 进行低、中、高危分组。此外,糖酵解和脂肪酸代谢模型的高危组患者的程序性细胞死亡配体 1(PD-L1 或 CD274)、程序性细胞死亡 1(PDCD1)、细胞毒性 T 淋巴细胞相关蛋白 4(CTLA-4)和淋巴细胞激活 3(LAG3)的表达往往更高。大多数代谢核心基因与免疫细胞浸润显著相关。此外,ABCB6、PPIA、UROD 和 NCAPH2 与肿瘤突变负担(TMB)和微卫星不稳定性(MSI)评分均呈正相关。使用 RT-qPCR 和 IHC 验证了 ABCB6、PPIA、UROD 和 NCAPH2 的表达。

结论

我们建立了基于代谢相关基因的新型预后模型,以更好地预测 HCC 患者的结局和免疫状态。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验