State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China.
Phys Chem Chem Phys. 2023 May 24;25(20):14232-14244. doi: 10.1039/d3cp01066j.
Pt/CeO catalysts exhibit excellent catalytic performance for the methanol dehydrogenation (MD) reaction. In this work, MD reactions on three systems of Pt/CeO(110)), Pt/CeO(110), and Pt/CeO(110) are investigated density functional theory (DFT) calculations. The CHOH adsorption, electronic structure of the catalyst, and mechanism of methanol decomposition (MD) are systematically calculated. The results reveal that the d-band center of the Pt atom moves away from the Fermi level in the order of Pt/CeO(110) < Pt/CeO(110) < Pt/CeO(110), and the order of the activity of the MD reaction is Pt/CeO(110) < Pt/CeO(10) < Pt/CeO(110). The results of the microkinetic dynamics simulation verify that only Pt/CeO(110) is conducive to the decomposition of methanol at low temperatures (373 K), and the products CO and H are easily dissociated from the catalyst surface. This work uncovers that both the small size and the Ce vacancy substituted sites of Pt favor the performance of the Pt/CeO catalyst, and provides theoretical guidance for the construction and design of efficient metal-support catalysts for the MD reaction.
Pt/CeO 催化剂在甲醇脱氢(MD)反应中表现出优异的催化性能。在这项工作中,使用密度泛函理论(DFT)计算研究了 Pt/CeO(110))、Pt/CeO(110)和 Pt/CeO(110)三个体系上的 MD 反应。系统地计算了 CHOH 吸附、催化剂的电子结构和甲醇分解(MD)的机理。结果表明,Pt 原子的 d 带中心从费米能级的移动顺序为 Pt/CeO(110) < Pt/CeO(110) < Pt/CeO(110),MD 反应的活性顺序为 Pt/CeO(110) < Pt/CeO(10) < Pt/CeO(110)。微观动力学模拟的结果验证了只有 Pt/CeO(110)有利于在低温(373 K)下分解甲醇,并且产物 CO 和 H 容易从催化剂表面解离。这项工作揭示了 Pt 的小尺寸和 Ce 空位取代位都有利于 Pt/CeO 催化剂的性能,为 MD 反应中高效金属-载体催化剂的构建和设计提供了理论指导。