Suppr超能文献

霍乱弧菌中几丁质反应的碳分解代谢物阻遏的分子机制。

The molecular mechanism for carbon catabolite repression of the chitin response in Vibrio cholerae.

机构信息

Department of Biology, Indiana University, Bloomington, Indiana, United States of America.

Department of Bacteriology I, National Institute of Infectious Diseases, Tokyo, Japan.

出版信息

PLoS Genet. 2023 May 12;19(5):e1010767. doi: 10.1371/journal.pgen.1010767. eCollection 2023 May.

Abstract

Vibrio cholerae is a facultative pathogen that primarily occupies marine environments. In this niche, V. cholerae commonly interacts with the chitinous shells of crustacean zooplankton. As a chitinolytic microbe, V. cholerae degrades insoluble chitin into soluble oligosaccharides. Chitin oligosaccharides serve as both a nutrient source and an environmental cue that induces a strong transcriptional response in V. cholerae. Namely, these oligosaccharides induce the chitin sensor, ChiS, to activate the genes required for chitin utilization and horizontal gene transfer by natural transformation. Thus, interactions with chitin impact the survival of V. cholerae in marine environments. Chitin is a complex carbon source for V. cholerae to degrade and consume, and the presence of more energetically favorable carbon sources can inhibit chitin utilization. This phenomenon, known as carbon catabolite repression (CCR), is mediated by the glucose-specific Enzyme IIA (EIIAGlc) of the phosphoenolpyruvate-dependent phosphotransferase system (PTS). In the presence of glucose, EIIAGlc becomes dephosphorylated, which inhibits ChiS transcriptional activity by an unknown mechanism. Here, we show that dephosphorylated EIIAGlc interacts with ChiS. We also isolate ChiS suppressor mutants that evade EIIAGlc-dependent repression and demonstrate that these alleles no longer interact with EIIAGlc. These findings suggest that EIIAGlc must interact with ChiS to exert its repressive effect. Importantly, the ChiS suppressor mutations we isolated also relieve repression of chitin utilization and natural transformation by EIIAGlc, suggesting that CCR of these behaviors is primarily regulated through ChiS. Together, our results reveal how nutrient conditions impact the fitness of an important human pathogen in its environmental reservoir.

摘要

霍乱弧菌是一种兼性病原体,主要栖息在海洋环境中。在这个小生境中,霍乱弧菌通常与甲壳类浮游动物的几丁质外壳相互作用。作为一种几丁质降解微生物,霍乱弧菌将不溶性几丁质降解成可溶性寡糖。几丁寡糖既是一种营养源,也是一种环境信号,能诱导霍乱弧菌产生强烈的转录反应。也就是说,这些寡糖诱导几丁质传感器 ChiS 激活利用几丁质和通过自然转化进行水平基因转移所需的基因。因此,与几丁质的相互作用影响霍乱弧菌在海洋环境中的生存。几丁质是霍乱弧菌降解和消耗的复杂碳源,而更具能量优势的碳源的存在会抑制几丁质的利用。这种现象被称为碳分解代谢物阻遏(CCR),由磷酸烯醇丙酮酸依赖的磷酸转移酶系统(PTS)中的葡萄糖特异性酶 IIA(EIIAGlc)介导。在葡萄糖存在的情况下,EIIAGlc 去磷酸化,通过未知的机制抑制 ChiS 转录活性。在这里,我们表明去磷酸化的 EIIAGlc 与 ChiS 相互作用。我们还分离出逃避 EIIAGlc 依赖性抑制的 ChiS 抑制突变体,并证明这些等位基因不再与 EIIAGlc 相互作用。这些发现表明,EIIAGlc 必须与 ChiS 相互作用才能发挥其抑制作用。重要的是,我们分离出的 ChiS 抑制突变体也解除了 EIIAGlc 对几丁质利用和自然转化的抑制,表明这些行为的 CCR 主要通过 ChiS 来调节。总之,我们的研究结果揭示了营养条件如何影响其在环境库中的重要人类病原体的适应性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6da2/10208484/e63cf6266ef8/pgen.1010767.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验