Suppr超能文献

基于机器学习的环保型绝缘介质分解产物气体传感器材料的高通量筛选

High-Throughput Screening of Gas Sensor Materials for Decomposition Products of Eco-Friendly Insulation Medium by Machine Learning.

机构信息

School of Electrical Engineering and Automation, Wuhan University, Wuhan, Hubei 430072, China.

Department of Engineering, Cambridge University, Cambridge CB2 1PZ, United Kingdom.

出版信息

ACS Sens. 2023 Jun 23;8(6):2319-2330. doi: 10.1021/acssensors.3c00376. Epub 2023 May 12.

Abstract

Nowadays, trifluoromethyl sulfonyl fluoride (CFSOF) has shown great potential to replace SF as an eco-friendly insulation medium in the power industry. In this work, an effective and low-cost design strategy toward ideal gas sensors for the decomposed gas products of CFSOF was proposed. The strategy achieved high-throughput screening from a large candidate space based on first-principle calculation and machine learning (ML). The candidate space is made up of different transition metal-embedded graphic carbon nitrides (TM/g-CN) owing to their high surface area and subtle electronic structure. Four main noteworthy decomposition gases of CFSOF, namely, CF, SO, SOF, and HF, as well as their initial stable structure on TM/g-CN were determined. The best-performing ML model was established and implemented to predict the interaction strength between gas products and TM/g-CN, thus determining the promising gas-sensing materials for target gases with the requirements of interaction strength, recovery time, sensitivity, and selectivity. Further analysis guarantees their stability and reveals the origin of excellent properties as a gas sensor. The high-throughput strategy opens a new avenue of rational and low-cost design principles of desirable gas-sensing materials in an interdisciplinary view.

摘要

如今,三氟甲基磺酰氟(CFSOF)作为一种环保的绝缘介质,在电力行业中具有巨大的应用潜力,可以替代六氟化硫(SF6)。在这项工作中,我们提出了一种针对 CFSOF 分解气体的理想气体传感器的有效且低成本的设计策略。该策略基于第一性原理计算和机器学习(ML),从大型候选空间中进行了高通量筛选。候选空间由不同的嵌入过渡金属的石墨相氮化碳(TM/g-CN)组成,因为它们具有较大的比表面积和细微的电子结构。确定了 CFSOF 的四种主要分解气体,即 CF、SO、SOF 和 HF,以及它们在 TM/g-CN 上的初始稳定结构。建立并实施了性能最佳的 ML 模型,以预测气体产物与 TM/g-CN 之间的相互作用强度,从而确定具有所需相互作用强度、恢复时间、灵敏度和选择性的有前途的目标气体传感材料。进一步的分析保证了它们的稳定性,并揭示了作为气体传感器的优异性能的起源。这种高通量策略为跨学科的理想气体传感材料的合理和低成本设计原则开辟了新途径。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验