Suppr超能文献

采用 ATP 生物发光的大小分类监测法快速评估空气中颗粒物的生物分布。

Size-classified monitoring of ATP bioluminescence for rapid assessment of biological distribution in airborne particulates.

机构信息

School of Mechanical Engineering, Yonsei University, Seoul, 03722, Republic of Korea.

Gyeongsangbuk-Do Institute of Health and Environment, Yeongcheon, 38874, Republic of Korea.

出版信息

Biosens Bioelectron. 2023 Aug 15;234:115356. doi: 10.1016/j.bios.2023.115356. Epub 2023 Apr 28.

Abstract

The COVID-19 pandemic ignited massive research into the rapid detection of bioaerosols. In particular, nanotechnology-based detection strategies are proposed as alternatives because of issues in bioaerosol enrichment and lead time for molecular diagnostics; however, the practical implementation of such techniques is still unclear due to obstacles regarding the large research and development effort and investment for the validation. The use of adenosine triphosphate (ATP) bioluminescence (expressed as relative luminescence unit (RLU) per unit volume of air) of airborne particulate matter (PM) to determine the bacterial population as a representative of the total bioaerosols (viruses, bacteria, and fungi) has been raised frequently because of the high reponse speed, resolution, and compatibility with culture-based bioaerosol monitoring. On the other hand, additional engineering attempts are required to confer significance because of the size-classified (bioluminescence for different PM sizes) and specific (bioluminescence per unit PM mass) biological risks of air for providing proper interventions in the case of airborne transmission. In this study, disc-type impactors to cut-off aerosols larger than 1 μm, 2.5 μm, and 10 μm were designed and constructed to collect PM1, PM2.5, and PM10 on sampling swabs. This engineering enabled reliable size-classified bioluminescence signals using a commercial ATP luminometer after just 5 min of air intake. The simultaneous operations of a six-stage Andersen impactor and optical PM spectrometers were conducted to determine the correlations between the resulting RLU and colony forming unit (CFU; from the Andersen impactor) or PM mass concentration (deriving specific bioluminescence).

摘要

COVID-19 大流行引发了大量针对生物气溶胶快速检测的研究。特别是,基于纳米技术的检测策略被提出作为替代方案,因为在生物气溶胶富集和分子诊断的前置时间方面存在问题;然而,由于在大型研发工作和验证投资方面存在障碍,这些技术的实际实施仍然不清楚。由于空气中颗粒物 (PM) 的腺苷三磷酸 (ATP) 生物发光(表示为每单位空气体积的相对发光单位 (RLU))可以快速确定细菌种群,因此作为总生物气溶胶(病毒、细菌和真菌)的代表经常被提出,因为其具有高响应速度、分辨率和与基于培养的生物气溶胶监测的兼容性。另一方面,由于空气的尺寸分类(不同 PM 尺寸的生物发光)和特定(单位 PM 质量的生物发光)生物学风险,需要进行额外的工程尝试来赋予其意义,以便在空气传播的情况下提供适当的干预措施。在这项研究中,设计并构建了圆盘式撞击器,以截留在 1μm、2.5μm 和 10μm 以上的气溶胶,并用采样拭子收集 PM1、PM2.5 和 PM10。这项工程技术使商业 ATP 发光计在仅仅 5 分钟的空气吸入后就能可靠地获得尺寸分类的生物发光信号。同时运行六级安德森撞击器和光学 PM 光谱仪,以确定产生的 RLU 与安德森撞击器中的集落形成单位 (CFU) 或 PM 质量浓度(衍生特定生物发光)之间的相关性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验