The Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA.
National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY, 11973, USA.
Small. 2023 Jul;19(28):e2301731. doi: 10.1002/smll.202301731. Epub 2023 May 12.
The commercialization of high-energy Li-metal batteries is impeded by Li dendrites formed during electrochemical cycling and the safety hazards it causes. Here, a novel porous copper current collector that can effectively mitigate the dendritic growth of Li is reported. This porous Cu foil is fabricated via a simple two-step electrochemical process, where Cu-Zn alloy is electrodeposited on commercial copper foil and then Zn is electrochemically dissolved to form a 3D porous structure of Cu. The 3D porous Cu layers on average have a thickness of ≈14 um and porosity of ≈72%. This current collector can effectively suppress Li dendrites in cells cycled with a high areal capacity of 10 mAh cm and under a high current density of 10 mA cm . This electrochemical fabrication method is facile and scalable for mass production. Results of advanced in situ synchrotron X-ray diffraction reveal the phase evolution of the electrochemical deposition and dealloying processes.
商业化的高能量锂金属电池受到电化学循环过程中形成的锂枝晶和由此带来的安全隐患的阻碍。在此,报道了一种新颖的多孔铜集流器,可有效抑制锂的枝晶生长。这种多孔铜箔是通过简单的两步电化学工艺制备的,在该工艺中,铜锌合金被电沉积在商用铜箔上,然后锌被电化学溶解,形成 3D 多孔铜结构。3D 多孔铜层的平均厚度约为 14μm,孔隙率约为 72%。该集流器可有效抑制在高面积容量 10mAh/cm 和高电流密度 10mA/cm 下循环的电池中的锂枝晶。这种电化学制备方法简单且适用于大规模生产。先进的同步辐射 X 射线衍射结果揭示了电化学沉积和脱合金过程的相演变。