Suppr超能文献

氮掺杂分级多孔碳源于煤用于高性能超级电容器。

Nitrogen-Doped Hierarchical Porous Carbon Derived from Coal for High-Performance Supercapacitor.

机构信息

State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, China.

出版信息

Molecules. 2023 Apr 23;28(9):3660. doi: 10.3390/molecules28093660.

Abstract

The surface properties and the hierarchical pore structure of carbon materials are important for their actual application in supercapacitors. It is important to pursue an integrated approach that is both easy and cost-effective but also challenging. Herein, coal-based hierarchical porous carbon with nitrogen doping was prepared by a simple dual template strategy using coal as the carbon precursor. The hierarchical pores were controlled by incorporating different target templates. Thanks to high conductivity, large electrochemically active surface area (483 m g), hierarchical porousness with appropriate micro-/mesoporous channels, and high surface nitrogen content (5.34%), the resulting porous carbon exhibits a high specific capacitance in a three-electrode system using KOH electrolytes, reaching 302 F g at 1 A g and 230 F g at 50 A g with a retention rate of 76%. At 250 W kg, the symmetrical supercapacitor assembled at 6 M KOH shows a high energy density of 8.3 Wh kg and the stability of the cycling is smooth. The energy density of the symmetric supercapacitor assembled under ionic liquids was further increased to 48.3 Wh kg with a power output of 750 W kg when the operating voltage was increased to 3 V. This work expands the application of coal-based carbon materials in capacitive energy storage.

摘要

碳材料的表面性质和分级孔结构对其在超级电容器中的实际应用非常重要。寻求一种既简单又经济高效但又具有挑战性的综合方法很重要。本文采用简单的双模板策略,以煤为碳前驱体,制备了具有氮掺杂的分级多孔碳。通过引入不同的目标模板来控制分级孔。由于高导电性、大电化学活性表面积(483 m² g)、具有适当微/介孔通道的分级多孔性和高表面氮含量(5.34%),所得多孔碳在 KOH 电解质的三电极系统中表现出高比电容,在 1 A g 时达到 302 F g,在 50 A g 时达到 230 F g,保留率为 76%。在 250 W kg 下,在 6 M KOH 组装的对称超级电容器具有 8.3 Wh kg 的高能量密度,循环稳定性平稳。当工作电压升高到 3 V 时,组装在离子液体中的对称超级电容器的能量密度进一步提高到 48.3 Wh kg,功率输出为 750 W kg。这项工作扩展了基于煤的碳材料在电容储能中的应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a376/10180139/83a885d2d2b3/molecules-28-03660-g001.jpg

相似文献

1
Nitrogen-Doped Hierarchical Porous Carbon Derived from Coal for High-Performance Supercapacitor.
Molecules. 2023 Apr 23;28(9):3660. doi: 10.3390/molecules28093660.
4
Soybean Root-Derived Hierarchical Porous Carbon as Electrode Material for High-Performance Supercapacitors in Ionic Liquids.
ACS Appl Mater Interfaces. 2016 Dec 14;8(49):33626-33634. doi: 10.1021/acsami.6b11162. Epub 2016 Nov 30.
6
Performance of Partially Exfoliated Nitrogen-Doped Carbon Nanotubes Wrapped with Hierarchical Porous Carbon in Electrolytes.
ChemSusChem. 2018 May 25;11(10):1664-1677. doi: 10.1002/cssc.201800147. Epub 2018 Apr 25.
7
Hierarchical structure N, O-co-doped porous carbon/carbon nanotube composite derived from coal for supercapacitors and CO capture.
Nanoscale Adv. 2020 Jan 11;2(2):878-887. doi: 10.1039/c9na00761j. eCollection 2020 Feb 18.
8
Microphase Separation Engineering toward 3D Porous Carbon Assembled from Nanosheets for Flexible All-Solid-State Supercapacitors.
ACS Appl Mater Interfaces. 2022 Mar 23;14(11):13250-13260. doi: 10.1021/acsami.1c23624. Epub 2022 Mar 8.
9
In Situ, Nitrogen-Doped Porous Carbon Derived from Mixed Biomass as Ultra-High-Performance Supercapacitor.
Nanomaterials (Basel). 2024 Aug 21;14(16):1368. doi: 10.3390/nano14161368.
10
Polysaccharide of agar based ultra-high specific surface area porous carbon for superior supercapacitor.
Int J Biol Macromol. 2023 Feb 15;228:40-47. doi: 10.1016/j.ijbiomac.2022.12.126. Epub 2022 Dec 15.

引用本文的文献

本文引用的文献

1
Self-Promoting Energy Storage in Balsa Wood-Converted Porous Carbon Coupled with Carbon Nanotubes.
Small. 2022 Dec;18(50):e2200272. doi: 10.1002/smll.202200272. Epub 2022 Nov 1.
2
Green Carbon Science: Efficient Carbon Resource Processing, Utilization, and Recycling towards Carbon Neutrality.
Angew Chem Int Ed Engl. 2022 Apr 4;61(15):e202112835. doi: 10.1002/anie.202112835. Epub 2022 Feb 10.
3
4
3D N,O-Codoped Egg-Box-Like Carbons with Tuned Channels for High Areal Capacitance Supercapacitors.
Nanomicro Lett. 2020 Apr 1;12(1):82. doi: 10.1007/s40820-020-00416-2.
5
Printing Porous Carbon Aerogels for Low Temperature Supercapacitors.
Nano Lett. 2021 May 12;21(9):3731-3737. doi: 10.1021/acs.nanolett.0c04780. Epub 2021 Mar 10.
6
Boosting Supercapacitor Performance of Graphene by Coupling with Nitrogen-Doped Hollow Carbon Frameworks.
Chemistry. 2020 Mar 2;26(13):2897-2903. doi: 10.1002/chem.201904701. Epub 2020 Feb 18.
7
Precise determination of graphene functionalization by in situ Raman spectroscopy.
Nat Commun. 2017 May 8;8:15192. doi: 10.1038/ncomms15192.
8
Interconnected carbon nanosheets derived from hemp for ultrafast supercapacitors with high energy.
ACS Nano. 2013 Jun 25;7(6):5131-41. doi: 10.1021/nn400731g. Epub 2013 May 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验