Department of Aerospace Science and Technology, Space Engineering University, Beijing 101416, China.
China Astronaut Research and Training Center, Beijing 100094, China.
Sensors (Basel). 2023 Apr 27;23(9):4344. doi: 10.3390/s23094344.
Mixed reality (MR) registers virtual information and real objects and is an effective way to supplement astronaut training. Spatial anchors are generally used to perform virtual-real fusion in static scenes but cannot handle movable objects. To address this issue, we propose a smart task assistance method based on object detection and point cloud alignment. Specifically, both fixed and movable objects are detected automatically. In parallel, poses are estimated with no dependence on preset spatial position information. Firstly, YOLOv5s is used to detect the object and segment the point cloud of the corresponding structure, called the partial point cloud. Then, an iterative closest point (ICP) algorithm between the partial point cloud and the template point cloud is used to calculate the object's pose and execute the virtual-real fusion. The results demonstrate that the proposed method achieves automatic pose estimation for both fixed and movable objects without background information and preset spatial anchors. Most volunteers reported that our approach was practical, and it thus expands the application of astronaut training.
混合现实(MR)注册虚拟信息和真实物体,是补充宇航员训练的有效方法。空间锚通常用于静态场景中的虚拟-现实融合,但无法处理可移动物体。针对这个问题,我们提出了一种基于目标检测和点云对齐的智能任务辅助方法。具体来说,我们可以自动检测固定和可移动物体。同时,我们可以在没有预设空间位置信息的情况下估计物体的姿态。首先,我们使用 YOLOv5s 检测物体并分割相应结构的点云,称为部分点云。然后,我们使用部分点云和模板点云之间的迭代最近点(ICP)算法计算物体的姿态并执行虚拟-现实融合。结果表明,该方法可以在没有背景信息和预设空间锚的情况下,对固定和可移动物体进行自动姿态估计。大多数志愿者报告说,我们的方法实用,因此扩展了宇航员训练的应用。