Suppr超能文献

基于级联随机共振系统全局参数优化模型的高性能自适应弱故障诊断。

High-Performance Adaptive Weak Fault Diagnosis Based on the Global Parameter Optimization Model of a Cascaded Stochastic Resonance System.

机构信息

Shenzhen Key Laboratory of High Performance Nontraditional Manufacturing, College of Mechatronics and Control Engineering, Shenzhen University, Shenzhen 518060, China.

Guangdong Key Laboratory of Electromagnetic Control and Intelligent Robots, College of Mechatronics and Control Engineering, Shenzhen University, Shenzhen 518060, China.

出版信息

Sensors (Basel). 2023 Apr 30;23(9):4429. doi: 10.3390/s23094429.

Abstract

Stochastic resonance (SR), as a type of noise-assisted signal processing method, has been widely applied in weak signal detection and mechanical weak fault diagnosis. In order to further improve the weak signal detection performance of SR-based approaches and realize high-performance weak fault diagnosis, a global parameter optimization (GPO) model of a cascaded SR system is proposed in this work. The cascaded SR systems, which involve multiple multi-parameter-adjusting SR systems with both bistable and tri-stable potential functions, are first introduced. The fixed-parameter optimization (FPO) model and the GPO models of the cascaded systems to achieve optimal SR outputs are proposed based on the particle swarm optimization (PSO) algorithm. Simulated results show that the GPO model is capable of achieving a better SR output compared to the FPO model with rather good robustness and stability in detecting low signal-to-noise ratio (SNR) weak signals, and the tri-stable cascaded SR system has a better weak signal detection performance compared to the bistable cascaded SR system. Furthermore, the weak fault diagnosis approach based on the GPO model of the tri-stable cascaded system is proposed, and two rolling bearing weak fault diagnosis experiments are performed, thus verifying the effectiveness of the proposed approach in high-performance adaptive weak fault diagnosis.

摘要

随机共振(Stochastic Resonance,SR)作为一种噪声辅助信号处理方法,已被广泛应用于弱信号检测和机械微弱故障诊断中。为了进一步提高基于 SR 的方法的弱信号检测性能,并实现高性能的微弱故障诊断,本文提出了级联 SR 系统的全局参数优化(Global Parameter Optimization,GPO)模型。首先介绍了级联 SR 系统,该系统涉及多个具有双稳态和三稳态势函数的多参数调整 SR 系统。基于粒子群优化(Particle Swarm Optimization,PSO)算法,提出了级联系统的固定参数优化(Fixed-Parameter Optimization,FPO)模型和实现最优 SR 输出的 GPO 模型。仿真结果表明,与 FPO 模型相比,GPO 模型在检测低信噪比(Signal-to-Noise Ratio,SNR)弱信号时能够获得更好的 SR 输出,并且三稳态级联 SR 系统具有更好的弱信号检测性能。此外,提出了基于三稳态级联系统 GPO 模型的微弱故障诊断方法,并进行了两个滚动轴承微弱故障诊断实验,验证了该方法在高性能自适应微弱故障诊断中的有效性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b024/10181567/e6be574f1786/sensors-23-04429-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验