Suppr超能文献

维生素 B6 和丝氨酸羟甲基转移酶 (SHMT) 之间的基因-营养相互作用影响果蝇的基因组完整性。

A gene-nutrient interaction between vitamin B6 and serine hydroxymethyltransferase (SHMT) affects genome integrity in Drosophila.

机构信息

Department of Biology and Biotechnology "Charles Darwin", Sapienza University of Rome, Rome, Italy.

Department of Biochemical Sciences "A. Rossi Fanelli", Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University of Rome, Rome, Italy.

出版信息

J Cell Physiol. 2023 Jul;238(7):1558-1566. doi: 10.1002/jcp.31033. Epub 2023 May 14.

Abstract

Pyridoxal 5'-phosphate (PLP), the catalytically active form of vitamin B6, participates as a cofactor to one carbon (1C) pathway that produces precursors for DNA metabolism. The concerted action of PLP-dependent serine hydroxymethyltransferase (SHMT) and thymidylate synthase (TS) leads to the biosynthesis of thymidylate (dTMP), which plays an essential function in DNA synthesis and repair. PLP deficiency causes chromosome aberrations (CABs) in Drosophila and human cells, rising the hypothesis that an altered 1C metabolism may be involved. To test this hypothesis, we used Drosophila as a model system and found, firstly, that in PLP deficient larvae SHMT activity is reduced by 40%. Second, we found that RNAi-induced SHMT depletion causes chromosome damage rescued by PLP supplementation and strongly exacerbated by PLP depletion. RNAi-induced TS depletion causes severe chromosome damage, but this is only slightly enhanced by PLP depletion. dTMP supplementation rescues CABs in both PLP-deficient and PLP-proficient SHMT . Altogether these data suggest that a reduction of SHMT activity caused by PLP deficiency contributes to chromosome damage by reducing dTMP biosynthesis. In addition, our work brings to light a gene-nutrient interaction between SHMT decreased activity and PLP deficiency impacting on genome stability that may be translated to humans.

摘要

吡哆醛 5'-磷酸(PLP)是维生素 B6 的催化活性形式,作为一种辅助因子参与产生 DNA 代谢前体的一碳(1C)途径。PLP 依赖性丝氨酸羟甲基转移酶(SHMT)和胸苷酸合成酶(TS)的协同作用导致胸苷酸(dTMP)的生物合成,dTMP 在 DNA 合成和修复中发挥着重要作用。PLP 缺乏会导致果蝇和人类细胞中的染色体异常(CABs),这就提出了一个假设,即改变的 1C 代谢可能与此有关。为了验证这一假设,我们使用果蝇作为模型系统,首先发现 PLP 缺乏的幼虫中 SHMT 活性降低了 40%。其次,我们发现 RNAi 诱导的 SHMT 耗竭会导致染色体损伤,而 PLP 补充可以挽救这种损伤,PLP 耗竭则会使其严重恶化。RNAi 诱导的 TS 耗竭会导致严重的染色体损伤,但这一损伤仅被 PLP 耗竭略微增强。dTMP 补充可以挽救 PLP 缺乏和 SHMT 功能正常的果蝇中的 CABs。总之,这些数据表明,PLP 缺乏导致的 SHMT 活性降低通过减少 dTMP 的生物合成,从而导致染色体损伤。此外,我们的工作揭示了 SHMT 活性降低与 PLP 缺乏之间的基因-营养相互作用,这种相互作用会影响基因组稳定性,可能会被转化到人类身上。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验