Biochemical Engineering Lab, Department of Biosciences and Bioengineering, IIT Roorkee, Roorkee, India.
Prep Biochem Biotechnol. 2024 Feb;54(2):207-217. doi: 10.1080/10826068.2023.2209897. Epub 2023 May 15.
The present study examines the impact of nitrogen sources (yeast extract, ammonium sulfate peptone, ammonium nitrate, urea, and sodium nitrate), salt solution (0.5 g/L MgSO, 0.5 g/L KHPO, 0.3 g/L CaCl), trace elements solution (0.1 g/L CuSO, 0.1 g/L FeSO, 0.02 g/L MnCl, 0.02 g/L ZnSO), operational parameters (temperature, aeration, agitation, initial pH and xylose concentration) and co- substrate supplementation (glucose, fructose, maltose, sucrose, and glycerol) on xylitol biosynthesis by ATCC 13803 using synthetic xylose. The significant medium components were identified using the Plackett Burman design followed by central composite designs to obtain the optimal concentration for the critical medium components in shaker flasks. Subsequently, the effect of operational parameters was examined using the One Factor At a Time method, followed by the impact of five co-substrates on xylitol biosynthesis in a 1 L bioreactor. The optimal media components and process parameters are as follows: peptone: 12.68 g/L, yeast extract: 6.62 g/L, salt solution (0.5 g/L MgSO, 0.5 g/L KHPO, and 0.3 g/L CaCl): 1.23 X (0.62 g/L, 0.62 g/L, and 0.37 g/L respectively), temperature: 30 °C, pH: 6, agitation: 400 rpm, aeration: 1 vvm, and xylose: 50 g/L. Optimization studies resulted in xylitol yield and productivity of 0.71 ± 0.004 g/g and 1.48 ± 0.018 g/L/h, respectively. Glycerol supplementation (2 g/L) further improved xylitol yield (0.83 ± 0.009 g/g) and productivity (1.87 ± 0.020 g/L/h) by 1.66 and 3.12 folds, respectively, higher than the unoptimized conditions thus exhibiting the potential of ATCC 13803 being used for commercial xylitol production.
本研究考察了氮源(酵母提取物、硫酸铵蛋白胨、硝酸铵、尿素和硝酸钠)、盐溶液(0.5 g/L MgSO、0.5 g/L KHPO 和 0.3 g/L CaCl)、微量元素溶液(0.1 g/L CuSO、0.1 g/L FeSO、0.02 g/L MnCl、0.02 g/L ZnSO)、操作参数(温度、通气、搅拌、初始 pH 值和木糖浓度)和共底物补加(葡萄糖、果糖、麦芽糖、蔗糖和甘油)对 ATCC 13803 利用合成木糖合成木糖醇的影响。使用 Plackett-Burman 设计确定显著的培养基成分,然后使用中心组合设计在摇瓶中获得关键培养基成分的最佳浓度。随后,使用单因素法考察操作参数的影响,然后在 1 L 生物反应器中考察 5 种共底物对木糖醇生物合成的影响。最佳培养基成分和工艺参数如下:蛋白胨:12.68 g/L,酵母提取物:6.62 g/L,盐溶液(0.5 g/L MgSO、0.5 g/L KHPO 和 0.3 g/L CaCl):1.23 X(分别为 0.62 g/L、0.62 g/L 和 0.37 g/L),温度:30°C,pH:6,搅拌:400 rpm,通气:1 vvm,木糖:50 g/L。优化研究得到的木糖醇产率和生产力分别为 0.71±0.004 g/g 和 1.48±0.018 g/L/h。甘油补加(2 g/L)进一步将木糖醇产率(0.83±0.009 g/g)和生产力(1.87±0.020 g/L/h)提高了 1.66 倍和 3.12 倍,分别比未优化条件高,表明 ATCC 13803 有用于商业木糖醇生产的潜力。